{"title":"Reducible Theories and Amalgamations of Models","authors":"Bahar Aameri, Michael Grüninger","doi":"https://dl.acm.org/doi/10.1145/3565364","DOIUrl":null,"url":null,"abstract":"<p>Within knowledge representation in artificial intelligence, a first-order ontology is a theory in first-order logic that axiomatizes the concepts in some domain. Ontology verification is concerned with the relationship between the intended models of an ontology and the models of the axiomatization of the ontology. In particular, we want to characterize the models of an ontology up to isomorphism and determine whether or not these models are equivalent to the intended models of the ontology. Unfortunately, it can be quite difficult to characterize the models of an ontology up to isomorphism. In the first half of this article, we review the different metalogical relationships between first-order theories and identify which relationship is needed for ontology verification. In particular, we will demonstrate that the notion of logical synonymy is needed to specify a representation theorem for the class of models of one first-order ontology with respect to another. In the second half of the article, we discuss the notion of reducible theories and show we can specify representation theorems by which models are constructed by amalgamating models of the constituent ontologies.</p>","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3565364","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Within knowledge representation in artificial intelligence, a first-order ontology is a theory in first-order logic that axiomatizes the concepts in some domain. Ontology verification is concerned with the relationship between the intended models of an ontology and the models of the axiomatization of the ontology. In particular, we want to characterize the models of an ontology up to isomorphism and determine whether or not these models are equivalent to the intended models of the ontology. Unfortunately, it can be quite difficult to characterize the models of an ontology up to isomorphism. In the first half of this article, we review the different metalogical relationships between first-order theories and identify which relationship is needed for ontology verification. In particular, we will demonstrate that the notion of logical synonymy is needed to specify a representation theorem for the class of models of one first-order ontology with respect to another. In the second half of the article, we discuss the notion of reducible theories and show we can specify representation theorems by which models are constructed by amalgamating models of the constituent ontologies.
期刊介绍:
TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI).
Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages.
The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field.
Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.