Reducible Theories and Amalgamations of Models

IF 0.7 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS ACM Transactions on Computational Logic Pub Date : 2023-01-18 DOI:https://dl.acm.org/doi/10.1145/3565364
Bahar Aameri, Michael Grüninger
{"title":"Reducible Theories and Amalgamations of Models","authors":"Bahar Aameri, Michael Grüninger","doi":"https://dl.acm.org/doi/10.1145/3565364","DOIUrl":null,"url":null,"abstract":"<p>Within knowledge representation in artificial intelligence, a first-order ontology is a theory in first-order logic that axiomatizes the concepts in some domain. Ontology verification is concerned with the relationship between the intended models of an ontology and the models of the axiomatization of the ontology. In particular, we want to characterize the models of an ontology up to isomorphism and determine whether or not these models are equivalent to the intended models of the ontology. Unfortunately, it can be quite difficult to characterize the models of an ontology up to isomorphism. In the first half of this article, we review the different metalogical relationships between first-order theories and identify which relationship is needed for ontology verification. In particular, we will demonstrate that the notion of logical synonymy is needed to specify a representation theorem for the class of models of one first-order ontology with respect to another. In the second half of the article, we discuss the notion of reducible theories and show we can specify representation theorems by which models are constructed by amalgamating models of the constituent ontologies.</p>","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3565364","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Within knowledge representation in artificial intelligence, a first-order ontology is a theory in first-order logic that axiomatizes the concepts in some domain. Ontology verification is concerned with the relationship between the intended models of an ontology and the models of the axiomatization of the ontology. In particular, we want to characterize the models of an ontology up to isomorphism and determine whether or not these models are equivalent to the intended models of the ontology. Unfortunately, it can be quite difficult to characterize the models of an ontology up to isomorphism. In the first half of this article, we review the different metalogical relationships between first-order theories and identify which relationship is needed for ontology verification. In particular, we will demonstrate that the notion of logical synonymy is needed to specify a representation theorem for the class of models of one first-order ontology with respect to another. In the second half of the article, we discuss the notion of reducible theories and show we can specify representation theorems by which models are constructed by amalgamating models of the constituent ontologies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可约理论与模型合并
在人工智能的知识表示中,一阶本体是一阶逻辑中对某一领域的概念进行公理化的理论。本体验证涉及本体的预期模型与本体公理化模型之间的关系。特别是,我们想要表征本体的模型,直到同构,并确定这些模型是否等同于本体的预期模型。不幸的是,要描述一个本体的模型到同构是相当困难的。在本文的前半部分,我们回顾了一阶理论之间的不同元学关系,并确定了本体验证需要哪些元学关系。特别是,我们将证明需要逻辑同义词的概念来指定一阶本体相对于另一阶本体的模型类的表示定理。在文章的后半部分,我们讨论了可约理论的概念,并表明我们可以指定表征定理,通过该定理,模型可以由组成本体的合并模型构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Computational Logic
ACM Transactions on Computational Logic 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
37
审稿时长
>12 weeks
期刊介绍: TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI). Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages. The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field. Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.
期刊最新文献
Computationally Hard Problems for Logic Programs under Answer Set Semantics Fundamental Logic is Decidable SAT Modulo Symmetries for Graph Generation and Enumeration Strong Backdoors for Default Logic One or Nothing: Anti-unification over the Simply-Typed Lambda Calculus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1