Dominique Devriese, Marco Patrignani, Frank Piessens
{"title":"Two Parametricities Versus Three Universal Types","authors":"Dominique Devriese, Marco Patrignani, Frank Piessens","doi":"https://dl.acm.org/doi/10.1145/3539657","DOIUrl":null,"url":null,"abstract":"<p>The formal calculus System F models the essence of polymorphism and abstract data types, features that exist in many programming languages. The calculus’ core property is parametricity: a theorem expressing the language’s abstractions and validating important principles like information hiding and modularity.</p><p>When System F is combined with features like recursive types, mutable state, continuations or exceptions, the formulation of parametricity needs to be adapted to follow suit, for example using techniques like step-indexing, Kripke world-indexing or biorthogonality. However, it is less clear how this formulation should change when System F is combined with untyped languages, gradual types, dynamic sealing and runtime type analysis (typecase) alongside type generation. Extensions of System F with these features have been proven to satisfy forms of parametricity (with Kripke worlds carrying semantic interpretations of types). However, the relative power of the modified formulations of parametricity with respect to others and the relative expressiveness of System F with and without these extensions are unknown.</p><p>In this paper, we explain that the aforementioned different settings have a common characteristic: they do not enforce or preserve the lexical scope of System F’s type variables. Formally, this results in the existence of a <i>universal type</i> (note: this is not the same as a <i>universally-quantified</i> type). We explain why standard parametricity is incompatible with such a type and how type worlds resolve this. Building on these insights, we answer two open conjectures from the literature, negatively, and we point out a deficiency in current proposals for combining System F with gradual types.</p>","PeriodicalId":50939,"journal":{"name":"ACM Transactions on Programming Languages and Systems","volume":"264 12","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Programming Languages and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3539657","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The formal calculus System F models the essence of polymorphism and abstract data types, features that exist in many programming languages. The calculus’ core property is parametricity: a theorem expressing the language’s abstractions and validating important principles like information hiding and modularity.
When System F is combined with features like recursive types, mutable state, continuations or exceptions, the formulation of parametricity needs to be adapted to follow suit, for example using techniques like step-indexing, Kripke world-indexing or biorthogonality. However, it is less clear how this formulation should change when System F is combined with untyped languages, gradual types, dynamic sealing and runtime type analysis (typecase) alongside type generation. Extensions of System F with these features have been proven to satisfy forms of parametricity (with Kripke worlds carrying semantic interpretations of types). However, the relative power of the modified formulations of parametricity with respect to others and the relative expressiveness of System F with and without these extensions are unknown.
In this paper, we explain that the aforementioned different settings have a common characteristic: they do not enforce or preserve the lexical scope of System F’s type variables. Formally, this results in the existence of a universal type (note: this is not the same as a universally-quantified type). We explain why standard parametricity is incompatible with such a type and how type worlds resolve this. Building on these insights, we answer two open conjectures from the literature, negatively, and we point out a deficiency in current proposals for combining System F with gradual types.
期刊介绍:
ACM Transactions on Programming Languages and Systems (TOPLAS) is the premier journal for reporting recent research advances in the areas of programming languages, and systems to assist the task of programming. Papers can be either theoretical or experimental in style, but in either case, they must contain innovative and novel content that advances the state of the art of programming languages and systems. We also invite strictly experimental papers that compare existing approaches, as well as tutorial and survey papers. The scope of TOPLAS includes, but is not limited to, the following subjects:
language design for sequential and parallel programming
programming language implementation
programming language semantics
compilers and interpreters
runtime systems for program execution
storage allocation and garbage collection
languages and methods for writing program specifications
languages and methods for secure and reliable programs
testing and verification of programs