Vasco T. Vasconcelos, Francisco Martins, Hugo-Andrés López, Nobuko Yoshida
{"title":"A Type Discipline for Message Passing Parallel Programs","authors":"Vasco T. Vasconcelos, Francisco Martins, Hugo-Andrés López, Nobuko Yoshida","doi":"https://dl.acm.org/doi/10.1145/3552519","DOIUrl":null,"url":null,"abstract":"<p>We present <span>ParTypes</span>, a type discipline for parallel programs. The model we have in mind comprises a fixed number of processes running in parallel and communicating via collective operations or point-to-point synchronous message exchanges. A type describes a protocol to be followed by each processes in a given program. We present the type theory, a core imperative programming language and its operational semantics, and prove that type checking is decidable (up to decidability of semantic entailment) and that well-typed programs do not deadlock and always terminate. The article is accompanied by a large number of examples drawn from the literature on parallel programming.</p>","PeriodicalId":50939,"journal":{"name":"ACM Transactions on Programming Languages and Systems","volume":"263 10","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Programming Languages and Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3552519","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We present ParTypes, a type discipline for parallel programs. The model we have in mind comprises a fixed number of processes running in parallel and communicating via collective operations or point-to-point synchronous message exchanges. A type describes a protocol to be followed by each processes in a given program. We present the type theory, a core imperative programming language and its operational semantics, and prove that type checking is decidable (up to decidability of semantic entailment) and that well-typed programs do not deadlock and always terminate. The article is accompanied by a large number of examples drawn from the literature on parallel programming.
期刊介绍:
ACM Transactions on Programming Languages and Systems (TOPLAS) is the premier journal for reporting recent research advances in the areas of programming languages, and systems to assist the task of programming. Papers can be either theoretical or experimental in style, but in either case, they must contain innovative and novel content that advances the state of the art of programming languages and systems. We also invite strictly experimental papers that compare existing approaches, as well as tutorial and survey papers. The scope of TOPLAS includes, but is not limited to, the following subjects:
language design for sequential and parallel programming
programming language implementation
programming language semantics
compilers and interpreters
runtime systems for program execution
storage allocation and garbage collection
languages and methods for writing program specifications
languages and methods for secure and reliable programs
testing and verification of programs