Amir Hossein Ghatari, Mina Aminghafari, Adel Mohammadpour
{"title":"A New Type of LASSO Regression Model with Cauchy Noise","authors":"Amir Hossein Ghatari, Mina Aminghafari, Adel Mohammadpour","doi":"10.1007/s13253-023-00583-w","DOIUrl":null,"url":null,"abstract":"<p>Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define <i>AIC</i> and <i>BIC</i> type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.</p>","PeriodicalId":56336,"journal":{"name":"Journal of Agricultural Biological and Environmental Statistics","volume":"116 1-2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Biological and Environmental Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13253-023-00583-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Many datasets have heavy-tailed behavior, and classical penalized models are not appropriate for them. To treat this problem, we propose a penalized regression that handles model selection and outliers issues simultaneously. We provide a LASSO regression for models with Cauchy distributed noises using the negative log-likelihood loss function. To select the regularization parameter, we define AIC and BIC type criteria. We study the distribution of the regression coefficients estimator in the simulation experiments. In addition, simulation study and real datasets analysis confirm the superiority of the proposed method.
期刊介绍:
The Journal of Agricultural, Biological and Environmental Statistics (JABES) publishes papers that introduce new statistical methods to solve practical problems in the agricultural sciences, the biological sciences (including biotechnology), and the environmental sciences (including those dealing with natural resources). Papers that apply existing methods in a novel context are also encouraged. Interdisciplinary papers and papers that illustrate the application of new and important statistical methods using real data are strongly encouraged. The journal does not normally publish papers that have a primary focus on human genetics, human health, or medical statistics.