Extreme-Case Distortion Risk Measures: A Unification and Generalization of Closed-Form Solutions

IF 1.4 3区 数学 Q2 MATHEMATICS, APPLIED Mathematics of Operations Research Pub Date : 2023-11-23 DOI:10.1287/moor.2022.0156
Hui Shao, Zhe George Zhang
{"title":"Extreme-Case Distortion Risk Measures: A Unification and Generalization of Closed-Form Solutions","authors":"Hui Shao, Zhe George Zhang","doi":"10.1287/moor.2022.0156","DOIUrl":null,"url":null,"abstract":"Extreme-case risk measures provide an approach for quantifying the upper and lower bounds of risk in situations where limited information is available regarding the underlying distributions. Previous research has demonstrated that for popular risk measures, such as value-at-risk and conditional value-at-risk, the worst-case counterparts can be evaluated in closed form when only the first two moments of the underlying distributions are known. In this study, we extend these findings by presenting closed-form solutions for a general class of distortion risk measures, which consists of various popular risk measures as special cases when the first and certain higher-order (i.e., second or more) absolute center moments, alongside the symmetry properties of the underlying distributions, are known. Moreover, we characterize the extreme-case distributions with convex or concave envelopes of the corresponding distributions. By providing closed-form solutions for extreme-case distortion risk measures and characterizations for the corresponding distributions, our research contributes to the understanding and application of risk quantification methodologies.Funding: H. Shao acknowledges support from the Yangtze River Delta Science and Technology Innovation Community Joint Research Program [Grant 2022CSJGG0800]. Z. G. Zhang acknowledges support from the Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2019-06364].Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2022.0156 .","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"229 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0156","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Extreme-case risk measures provide an approach for quantifying the upper and lower bounds of risk in situations where limited information is available regarding the underlying distributions. Previous research has demonstrated that for popular risk measures, such as value-at-risk and conditional value-at-risk, the worst-case counterparts can be evaluated in closed form when only the first two moments of the underlying distributions are known. In this study, we extend these findings by presenting closed-form solutions for a general class of distortion risk measures, which consists of various popular risk measures as special cases when the first and certain higher-order (i.e., second or more) absolute center moments, alongside the symmetry properties of the underlying distributions, are known. Moreover, we characterize the extreme-case distributions with convex or concave envelopes of the corresponding distributions. By providing closed-form solutions for extreme-case distortion risk measures and characterizations for the corresponding distributions, our research contributes to the understanding and application of risk quantification methodologies.Funding: H. Shao acknowledges support from the Yangtze River Delta Science and Technology Innovation Community Joint Research Program [Grant 2022CSJGG0800]. Z. G. Zhang acknowledges support from the Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada [Grant RGPIN-2019-06364].Supplemental Material: The online appendix is available at https://doi.org/10.1287/moor.2022.0156 .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
极端情况失真风险度量:封闭解的统一与推广
在有关潜在分布的信息有限的情况下,极端情况风险度量提供了一种量化风险上限和下限的方法。先前的研究表明,对于流行的风险度量,如风险价值和条件风险价值,当只知道底层分布的前两个矩时,最坏情况对应物可以以封闭形式进行评估。在本研究中,我们通过提出一般类型的失真风险度量的封闭形式解来扩展这些发现,其中包括各种流行的风险度量,作为已知第一阶和某些高阶(即第二阶或更多)绝对中心矩以及底层分布的对称性的特殊情况。此外,我们用相应分布的凸或凹包络来表征极端情况分布。通过提供极端情况失真风险度量的封闭解和相应分布的表征,我们的研究有助于理解和应用风险量化方法。基金资助:H. Shao感谢长江三角洲科技创新社区联合研究计划[Grant 2022CSJGG0800]的支持。张志刚感谢加拿大自然科学与工程研究理事会加拿大加工技术研究与创新网络的支持[Grant RGPIN-2019-06364]。补充材料:在线附录可在https://doi.org/10.1287/moor.2022.0156上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics of Operations Research
Mathematics of Operations Research 管理科学-应用数学
CiteScore
3.40
自引率
5.90%
发文量
178
审稿时长
15.0 months
期刊介绍: Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.
期刊最新文献
Dual Solutions in Convex Stochastic Optimization Exit Game with Private Information A Retrospective Approximation Approach for Smooth Stochastic Optimization The Minimax Property in Infinite Two-Person Win-Lose Games Envy-Free Division of Multilayered Cakes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1