{"title":"Worst-Case Iteration Bounds for Log Barrier Methods on Problems with Nonconvex Constraints","authors":"Oliver Hinder, Yinyu Ye","doi":"10.1287/moor.2020.0274","DOIUrl":null,"url":null,"abstract":"Interior point methods (IPMs) that handle nonconvex constraints such as IPOPT, KNITRO and LOQO have had enormous practical success. We consider IPMs in the setting where the objective and constraints are thrice differentiable, and have Lipschitz first and second derivatives on the feasible region. We provide an IPM that, starting from a strictly feasible point, finds a μ-approximate Fritz John point by solving [Formula: see text] trust-region subproblems. For IPMs that handle nonlinear constraints, this result represents the first iteration bound with a polynomial dependence on [Formula: see text]. We also show how to use our method to find scaled-KKT points starting from an infeasible solution and improve on existing complexity bounds.Funding: This work was supported by Air Force Office of Scientific Research [9550-23-1-0242]. A significant portion of this work was done at Stanford where O. Hinder was supported by the PACCAR, Inc., Stanford Graduate Fellowship and the Dantzig-Lieberman fellowship.","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"231 6","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2020.0274","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 6
Abstract
Interior point methods (IPMs) that handle nonconvex constraints such as IPOPT, KNITRO and LOQO have had enormous practical success. We consider IPMs in the setting where the objective and constraints are thrice differentiable, and have Lipschitz first and second derivatives on the feasible region. We provide an IPM that, starting from a strictly feasible point, finds a μ-approximate Fritz John point by solving [Formula: see text] trust-region subproblems. For IPMs that handle nonlinear constraints, this result represents the first iteration bound with a polynomial dependence on [Formula: see text]. We also show how to use our method to find scaled-KKT points starting from an infeasible solution and improve on existing complexity bounds.Funding: This work was supported by Air Force Office of Scientific Research [9550-23-1-0242]. A significant portion of this work was done at Stanford where O. Hinder was supported by the PACCAR, Inc., Stanford Graduate Fellowship and the Dantzig-Lieberman fellowship.
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.