{"title":"Investigation of dynamic compression properties of basalt fiber reactive powder concrete","authors":"Haiyang Sha, Jinchun Liu, Xianwen Fu","doi":"10.1680/jadcr.23.00007","DOIUrl":null,"url":null,"abstract":"Basalt fiber reactive powder concrete (BFRPC) was prepared by incorporating basalt fibers (BFs) instead of steel fiber into reactive powder concrete (RPC). In this study, we experimentally and numerically analyzed the impact resistance of BFRPC at different strain rates (10<sup>1</sup>∼10<sup>1</sup> s<sup>1</sup>). The Φ75mm Split Hopkinson pressure bar (SHPB) was used for impact compression tests and the finite element software LS-DYNA was used for numerical simulation analysis. The results showed that the high strength BFRPC has an obvious strain rate effect and the dynamic growth factor (DIF) of compressive strength increases logarithmically with strain rate. Meanwhile, the parameters of the CEB model were refitted and the relationship between strain rate and DIF was established. By using the Johnson_Holmquist_Concrete material constitutive model (HJC model), the stress-strain curves and failure patterns obtained were consistent with the experimental results. The incorporation of BFs significantly improve the deformation properties of BFRPC.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jadcr.23.00007","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Basalt fiber reactive powder concrete (BFRPC) was prepared by incorporating basalt fibers (BFs) instead of steel fiber into reactive powder concrete (RPC). In this study, we experimentally and numerically analyzed the impact resistance of BFRPC at different strain rates (101∼101 s1). The Φ75mm Split Hopkinson pressure bar (SHPB) was used for impact compression tests and the finite element software LS-DYNA was used for numerical simulation analysis. The results showed that the high strength BFRPC has an obvious strain rate effect and the dynamic growth factor (DIF) of compressive strength increases logarithmically with strain rate. Meanwhile, the parameters of the CEB model were refitted and the relationship between strain rate and DIF was established. By using the Johnson_Holmquist_Concrete material constitutive model (HJC model), the stress-strain curves and failure patterns obtained were consistent with the experimental results. The incorporation of BFs significantly improve the deformation properties of BFRPC.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.