Parameter estimation for cellular automata

Alexey Kazarnikov, Nadja Ray, Heikki Haario, Joona Lappalainen, Andreas Rupp
{"title":"Parameter estimation for cellular automata","authors":"Alexey Kazarnikov, Nadja Ray, Heikki Haario, Joona Lappalainen, Andreas Rupp","doi":"arxiv-2301.13320","DOIUrl":null,"url":null,"abstract":"Self organizing complex systems can be modeled using cellular automaton\nmodels. However, the parametrization of these models is crucial and\nsignificantly determines the resulting structural pattern. In this research, we\nintroduce and successfully apply a sound statistical method to estimate these\nparameters. The method is based on constructing Gaussian likelihoods using\ncharacteristics of the structures such as the mean particle size. We show that\nour approach is robust with respect to the method parameters, domain size of\npatterns, or CA iterations.","PeriodicalId":501231,"journal":{"name":"arXiv - PHYS - Cellular Automata and Lattice Gases","volume":"61 42","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Cellular Automata and Lattice Gases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2301.13320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Self organizing complex systems can be modeled using cellular automaton models. However, the parametrization of these models is crucial and significantly determines the resulting structural pattern. In this research, we introduce and successfully apply a sound statistical method to estimate these parameters. The method is based on constructing Gaussian likelihoods using characteristics of the structures such as the mean particle size. We show that our approach is robust with respect to the method parameters, domain size of patterns, or CA iterations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
元胞自动机的参数估计
自组织复杂系统可以用元胞自动机模型建模。然而,这些模型的参数化是至关重要的,并显著地决定了最终的结构模式。在本研究中,我们引入并成功地应用了一种可靠的统计方法来估计这些参数。该方法基于利用结构的特征(如平均粒径)构建高斯似然。我们表明,我们的方法在方法参数、模式的域大小或CA迭代方面是鲁棒的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Networks of Binary Necklaces Induced by Elementary Cellular Automata Rules Convolutional Neural Networks for Automated Cellular Automaton Classification Efficient Simulation of Non-uniform Cellular Automata with a Convolutional Neural Network Block approximations for probabilistic mixtures of elementary cellular automata Complete ergodicity in one-dimensional reversible cellar automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1