UQSA -- An R-Package for Uncertainty Quantification and Sensitivity Analysis for Biochemical Reaction Network Models

Andrei Kramer, Federica Milinanni, Pierre Nyquist, Alexandra Jauhiainen, Olivia Eriksson
{"title":"UQSA -- An R-Package for Uncertainty Quantification and Sensitivity Analysis for Biochemical Reaction Network Models","authors":"Andrei Kramer, Federica Milinanni, Pierre Nyquist, Alexandra Jauhiainen, Olivia Eriksson","doi":"arxiv-2308.05527","DOIUrl":null,"url":null,"abstract":"We present an R-package developed for modeling of biochemical reaction\nnetworks, uncertainty quantification (UQ) and sensitivity analysis (SA).\nEstimating parameters and quantifying their uncertainty (and resulting\nprediction uncertainty), is required for data-driven systems biology modeling.\nSampling methods need to be efficient when confronted with high-dimensional,\ncorrelated parameter distributions. We have developed the UQSA package to be\nfast for this problem class and work well with other tools for modelling. We\naim for simplicity, and part of that is our use of the SBtab format for the\nunified storage of model and data. Our tool-set is modular enough, that parts\ncan be replaced. We use intermediate formats that are not hidden from the user\nto make this feasible. UQ is performed through Markov chain Monte Carlo (MCMC)\nsampling in an Approximate Bayesian Computation (ABC) setting. This can be\nfollowed by a variance-decomposition based global sensitivity analysis. If\nneeded, complex parameter distributions can be described, evaluated, and\nsampled from, with the help of Vine-copulas that are available in R. This\napproach is especially useful when new experimental data become available, and\na previously calibrated model needs to be updated. Implementation: R is a high-level language and allows the use of\nsophisticated statistical methods. The ode solver we used is written in C\n(gsl_odeiv2, interface to R is ours). We use the SBtab tabular format for the\nmodel description, as well as the data and an event system to be able to model\ninputs frequently encountered in systems biology and neuroscience. The code has\nbeen tested on one node with 256 cores of a computing cluster, but smaller\nexamples are included in the repository that can be run on a laptop. Source code: https://github.com/icpm-kth/uqsa","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"58 39","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2308.05527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an R-package developed for modeling of biochemical reaction networks, uncertainty quantification (UQ) and sensitivity analysis (SA). Estimating parameters and quantifying their uncertainty (and resulting prediction uncertainty), is required for data-driven systems biology modeling. Sampling methods need to be efficient when confronted with high-dimensional, correlated parameter distributions. We have developed the UQSA package to be fast for this problem class and work well with other tools for modelling. We aim for simplicity, and part of that is our use of the SBtab format for the unified storage of model and data. Our tool-set is modular enough, that parts can be replaced. We use intermediate formats that are not hidden from the user to make this feasible. UQ is performed through Markov chain Monte Carlo (MCMC) sampling in an Approximate Bayesian Computation (ABC) setting. This can be followed by a variance-decomposition based global sensitivity analysis. If needed, complex parameter distributions can be described, evaluated, and sampled from, with the help of Vine-copulas that are available in R. This approach is especially useful when new experimental data become available, and a previously calibrated model needs to be updated. Implementation: R is a high-level language and allows the use of sophisticated statistical methods. The ode solver we used is written in C (gsl_odeiv2, interface to R is ours). We use the SBtab tabular format for the model description, as well as the data and an event system to be able to model inputs frequently encountered in systems biology and neuroscience. The code has been tested on one node with 256 cores of a computing cluster, but smaller examples are included in the repository that can be run on a laptop. Source code: https://github.com/icpm-kth/uqsa
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UQSA——一个用于生化反应网络模型不确定度定量和敏感性分析的r包
我们提出了一个r包开发的生化反应网络建模,不确定度量化(UQ)和敏感性分析(SA)。估计参数和量化它们的不确定性(以及由此产生的预测不确定性)是数据驱动系统生物学建模所必需的。当面对高维、相关的参数分布时,采样方法需要高效。我们已经开发了UQSA包来支持这个问题类,并且可以很好地与其他建模工具一起工作。我们的目标是简单,部分原因是我们使用了SBtab格式来统一存储模型和数据。我们的工具集是模块化的,零件可以替换。我们使用对用户不隐藏的中间格式来实现这一点。UQ是通过在近似贝叶斯计算(ABC)设置下的马尔可夫链蒙特卡罗(MCMC)采样来执行的。接下来可以进行基于方差分解的全局敏感性分析。如果需要,在r中可用的vine -copula的帮助下,可以描述,评估和采样复杂的参数分布。这种方法在新的实验数据可用时特别有用,并且以前校准的模型需要更新。实现:R是一种高级语言,允许使用复杂的统计方法。我们使用的代码求解器是用C编写的(gsl_odeiv2,与R的接口是我们的)。我们使用SBtab表格格式进行模型描述,以及数据和事件系统,以便能够对系统生物学和神经科学中经常遇到的输入进行建模。代码已经在一个具有256核计算集群的节点上进行了测试,但是存储库中包含了可以在笔记本电脑上运行的更小的示例。源代码:https://github.com/icpm-kth/uqsa
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal loop and Stock-Flow Modeling of Signal Transduction Pathways Transient contacts between filaments impart its elasticity to branched actin Ultra-rapid, Quantitative, Label-free Antibiotic Susceptibility Testing via Optically Detected Purine Metabolites Intracellular order formation through stepwise phase transitions A Novel Use of Pseudospectra in Mathematical Biology: Understanding HPA Axis Sensitivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1