Charting the landscape of stochastic gene expression models using queueing theory

Juraj Szavits-Nossan, Ramon Grima
{"title":"Charting the landscape of stochastic gene expression models using queueing theory","authors":"Juraj Szavits-Nossan, Ramon Grima","doi":"arxiv-2307.03253","DOIUrl":null,"url":null,"abstract":"Stochastic models of gene expression are typically formulated using the\nchemical master equation, which can be solved exactly or approximately using a\nrepertoire of analytical methods. Here, we provide a tutorial review of an\nalternative approach based on queuing theory that has rarely been used in the\nliterature of gene expression. We discuss the interpretation of six types of\ninfinite server queues from the angle of stochastic single-cell biology and\nprovide analytical expressions for the stationary and non-stationary\ndistributions and/or moments of mRNA/protein numbers, and bounds on the Fano\nfactor. This approach may enable the solution of complex models which have\nhitherto evaded analytical solution.","PeriodicalId":501170,"journal":{"name":"arXiv - QuanBio - Subcellular Processes","volume":"58 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Subcellular Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2307.03253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stochastic models of gene expression are typically formulated using the chemical master equation, which can be solved exactly or approximately using a repertoire of analytical methods. Here, we provide a tutorial review of an alternative approach based on queuing theory that has rarely been used in the literature of gene expression. We discuss the interpretation of six types of infinite server queues from the angle of stochastic single-cell biology and provide analytical expressions for the stationary and non-stationary distributions and/or moments of mRNA/protein numbers, and bounds on the Fano factor. This approach may enable the solution of complex models which have hitherto evaded analytical solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用排队理论绘制随机基因表达模型的图景
基因表达的随机模型通常是用化学主方程来表示的,它可以用一系列的分析方法精确或近似地求解。在这里,我们提供了一个基于排队论的替代方法的教程综述,这种方法很少在基因表达的文献中使用。我们从随机单细胞生物学的角度讨论了六种类型的有限服务器队列的解释,并提供了mRNA/蛋白数的平稳和非平稳分布和/或矩的解析表达式,以及fanfactor的界。这种方法可以解决迄今为止无法通过分析解决的复杂模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causal loop and Stock-Flow Modeling of Signal Transduction Pathways Transient contacts between filaments impart its elasticity to branched actin Ultra-rapid, Quantitative, Label-free Antibiotic Susceptibility Testing via Optically Detected Purine Metabolites Intracellular order formation through stepwise phase transitions A Novel Use of Pseudospectra in Mathematical Biology: Understanding HPA Axis Sensitivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1