Development and Validation of Simultaneous Quantitative Dissolution Analysis for the Two Active Pharmaceutical Ingredients in Dapagliflozin Propanediol Monohydrate–Sitagliptin Phosphate Monohydrate Multi-Layered Tablets
{"title":"Development and Validation of Simultaneous Quantitative Dissolution Analysis for the Two Active Pharmaceutical Ingredients in Dapagliflozin Propanediol Monohydrate–Sitagliptin Phosphate Monohydrate Multi-Layered Tablets","authors":"Ji-Hye Shin, Joo-Eun Kim","doi":"10.2174/0115734129270782231123103912","DOIUrl":null,"url":null,"abstract":"Background: Recently, a combination prescription with the main ingredients sitagliptin and dapagliflozin as dipeptidyl peptidase-4 andsodium–glucose cotransporter-2 inhibitors, respectively, for the treatment of type 2 diabetes has widely been issued in hospitals. However, the development of double-layered tablets requires simultaneous quantitative dissolution tests that are significantly efficient and cost-effective. Objective: Individual analysis of the two active pharmaceutical ingredients (APIs) incurs more than twice the time and cost. Consequently, this study aimed to develop a dissolution analysis method that simultaneously quantifies the APIs dapagliflozin and sitagliptin in multilayered tablets. This simultaneous quantitative dissolution analysis can dramatically reduce analysis time and cost. Methods: For reversed-phase high-performance liquid chromatography (RP-HPLC) analysis using ultraviolet detection, a Zorbax C18 column (4.6 × 150 mm, 5 μm) was used, and the flow rate was 1.5 mL/min, injection amount 20 μL, and maximum absorption wavelength set to 205 nm. Additionally, the analysis time was set to 1.5 times the retention time of dapagliflozin Results: The retention times of dapagliflozin and sitagliptin were 11.57 and 2.56 min, respectively. Further, their relative standard deviations were 0.11% and 0.05%, respectively. Quantitative analysis using RP-HPLC confirmed no peak interference between the APIs and excipients. Both APIs exhibited linearity at a 20–120% concentration. Conclusion: The dissolution method developed in this study can quantify both APIs simultaneously, thereby reducing analysis time and cost by more than 50% and increasing efficiency in the pharmaceutical industry.","PeriodicalId":10889,"journal":{"name":"Current Pharmaceutical Analysis","volume":"44 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Pharmaceutical Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734129270782231123103912","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Recently, a combination prescription with the main ingredients sitagliptin and dapagliflozin as dipeptidyl peptidase-4 andsodium–glucose cotransporter-2 inhibitors, respectively, for the treatment of type 2 diabetes has widely been issued in hospitals. However, the development of double-layered tablets requires simultaneous quantitative dissolution tests that are significantly efficient and cost-effective. Objective: Individual analysis of the two active pharmaceutical ingredients (APIs) incurs more than twice the time and cost. Consequently, this study aimed to develop a dissolution analysis method that simultaneously quantifies the APIs dapagliflozin and sitagliptin in multilayered tablets. This simultaneous quantitative dissolution analysis can dramatically reduce analysis time and cost. Methods: For reversed-phase high-performance liquid chromatography (RP-HPLC) analysis using ultraviolet detection, a Zorbax C18 column (4.6 × 150 mm, 5 μm) was used, and the flow rate was 1.5 mL/min, injection amount 20 μL, and maximum absorption wavelength set to 205 nm. Additionally, the analysis time was set to 1.5 times the retention time of dapagliflozin Results: The retention times of dapagliflozin and sitagliptin were 11.57 and 2.56 min, respectively. Further, their relative standard deviations were 0.11% and 0.05%, respectively. Quantitative analysis using RP-HPLC confirmed no peak interference between the APIs and excipients. Both APIs exhibited linearity at a 20–120% concentration. Conclusion: The dissolution method developed in this study can quantify both APIs simultaneously, thereby reducing analysis time and cost by more than 50% and increasing efficiency in the pharmaceutical industry.
期刊介绍:
Aims & Scope
Current Pharmaceutical Analysis publishes expert reviews and original research articles on all the most recent advances in pharmaceutical and biomedical analysis. All aspects of the field are represented including drug analysis, analytical methodology and instrumentation. The journal is essential to all involved in pharmaceutical, biochemical and clinical analysis.