Yi Shen, Yi Liu, Pan Dong, Mao Ye, Huang Zhang, Liansheng Xia, Jinshui Shi, Jianjun Deng
{"title":"A Pulsed Synchronous Linear Accelerator for Low-Energy Proton","authors":"Yi Shen, Yi Liu, Pan Dong, Mao Ye, Huang Zhang, Liansheng Xia, Jinshui Shi, Jianjun Deng","doi":"10.1155/2022/2836767","DOIUrl":null,"url":null,"abstract":"A low-energy proton accelerator named pulsed synchronous linear accelerator (PSLA) is proposed and developed at the <i>Institute of Fluid Physics</i>, which is driven by unipolar-pulsed high voltages. Pulsed-accelerating electric fields and low-energy ion beams are precisely synchronized on temporal and spatial positions for continuous acceleration. The operating mode and the features of the PSLA are introduced. At present, the feasibility of a low-energy proton PSLA has been verified in principle. An average accelerating gradient up to 3 MV/m for protons is achieved.","PeriodicalId":49925,"journal":{"name":"Laser and Particle Beams","volume":"153 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser and Particle Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1155/2022/2836767","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A low-energy proton accelerator named pulsed synchronous linear accelerator (PSLA) is proposed and developed at the Institute of Fluid Physics, which is driven by unipolar-pulsed high voltages. Pulsed-accelerating electric fields and low-energy ion beams are precisely synchronized on temporal and spatial positions for continuous acceleration. The operating mode and the features of the PSLA are introduced. At present, the feasibility of a low-energy proton PSLA has been verified in principle. An average accelerating gradient up to 3 MV/m for protons is achieved.
期刊介绍:
Laser and Particle Beams is an international journal which deals with basic physics issues of intense laser and particle beams, and the interaction of these beams with matter. Research on pulse power technology associated with beam generation is also of strong interest. Subjects covered include the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology.