Fluid Pressure Response at the Straight Pipe Outlet Under Random Axial Vibration

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-11-17 DOI:10.1007/s40997-023-00723-0
Wei Li, Huailiang Zhang, Wei Qu
{"title":"Fluid Pressure Response at the Straight Pipe Outlet Under Random Axial Vibration","authors":"Wei Li, Huailiang Zhang, Wei Qu","doi":"10.1007/s40997-023-00723-0","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the fluid pressure response at the outlet of a vertical fluid delivery straight pipe under random axial vibration. Based on the classical fluid–structure interaction (FSI) 4-equation model and forced vibration theory, the FSI equations of motion of the pipe under random axial vibration are established. Then, the variance of the pressure response at the pipe outlet is solved by combining the pseudo-excitation method and the characteristic line method. The correctness of the proposed method is verified by comparing the results obtained by the proposed method with the Monte Carlo simulation method. Since the pseudo-excitation method can directly obtain the pressure variance without many sample calculations, the method in this paper has high computational efficiency. The influence laws of fluid velocity, pressure, pipe structural parameters, and power spectral density of random vibration on the pressure response of pipe outlet are analyzed. The results show that the effect of random axial vibration on the fluid pressure response at the pipe outlet is significant and cannot be ignored. Increasing the pipe's inner diameter or shortening the pipe's length is beneficial in reducing the fluctuation of the pressure response at the outlet of the pipe. The analytical method in this paper can effectively analyze the outlet pressure of the pipe under random axial excitation and can provide a theoretical basis for reducing the fluid pressure fluctuation in the pipe under random vibration.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00723-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the fluid pressure response at the outlet of a vertical fluid delivery straight pipe under random axial vibration. Based on the classical fluid–structure interaction (FSI) 4-equation model and forced vibration theory, the FSI equations of motion of the pipe under random axial vibration are established. Then, the variance of the pressure response at the pipe outlet is solved by combining the pseudo-excitation method and the characteristic line method. The correctness of the proposed method is verified by comparing the results obtained by the proposed method with the Monte Carlo simulation method. Since the pseudo-excitation method can directly obtain the pressure variance without many sample calculations, the method in this paper has high computational efficiency. The influence laws of fluid velocity, pressure, pipe structural parameters, and power spectral density of random vibration on the pressure response of pipe outlet are analyzed. The results show that the effect of random axial vibration on the fluid pressure response at the pipe outlet is significant and cannot be ignored. Increasing the pipe's inner diameter or shortening the pipe's length is beneficial in reducing the fluctuation of the pressure response at the outlet of the pipe. The analytical method in this paper can effectively analyze the outlet pressure of the pipe under random axial excitation and can provide a theoretical basis for reducing the fluid pressure fluctuation in the pipe under random vibration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机轴向振动下直管出口流体压力响应
研究了随机轴向振动作用下垂直输液直管出口的流体压力响应。基于经典的流固耦合四方程模型和强迫振动理论,建立了管道在随机轴向振动作用下的流固耦合运动方程。然后,结合拟激励法和特征线法求解管道出口压力响应的方差;通过与蒙特卡罗仿真方法的比较,验证了所提方法的正确性。由于伪激励法可以直接获得压力方差,无需进行大量的样本计算,因此本文方法具有较高的计算效率。分析了流体速度、压力、管道结构参数和随机振动功率谱密度对管道出口压力响应的影响规律。结果表明,随机轴向振动对管道出口流体压力响应的影响是显著的,不容忽视。增大管道内径或缩短管道长度有利于减小管道出口压力响应的波动。本文的分析方法可以有效地分析随机轴向激励下管道的出口压力,为减小随机振动下管道内流体压力波动提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1