{"title":"The effects of saline water preheating and heat recovery in a vapour-based multistage solar still","authors":"Mfanafuthi Mthandeni Mkhize, Velaphi Msomi","doi":"10.1186/s40807-023-00086-9","DOIUrl":null,"url":null,"abstract":"The current study complements a broader body of research on solar distillation, including research on heat recycling capabilities and other related factors in multistage solar distillation systems. Solar stills can be used in various applications to provide safe and clean water from natural sources. This study is based on field data collected, analysed, and interpreted over ten (10) months. The solar still operated at atmospheric pressure and produced a distillate by evaporating saline water (SW) at ~ 100 °C. The maximum SW preheating was 75.5 °C with 30,821.04 kJ/m2 day collected by the solar collectors. The corresponding overall thermal efficiency of the test rig was 33.83%. The overall thermal efficiency decreased with increasing wind speed, averaging at 3.12 m/s to 28.31% due to increased heat loss to the environment when 30,780 kJ/m2day was collected. It further declined to 5.89% with low meteorological conditions of 209.81 W/m2, 15.66 °C and 2.66 m/s, respectively, on average. However, the benefits of increased wind speed were enhanced condensation and productivity. The study also found that the ideal thermal energy delivery rate was $$\\sim$$ 600 W/m2 or an impulsive mode at higher solar insolation. A balanced condensation rate, SW preheating, heat recovery and overall thermal efficiency can be achieved at this delivery rate. A significant correlation was observed, indicating that the simultaneous increase in the average heat input rate and wind velocities positively impacted distillate output. Conversely, low average wind velocity improved overall thermal efficiency, resulting in a distillate output of 6730 ml for the five stacked stages, despite a slight discrepancy of 3.2 W/m2 in the heat input rate.","PeriodicalId":93049,"journal":{"name":"Renewables: wind, water, and solar","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewables: wind, water, and solar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40807-023-00086-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The current study complements a broader body of research on solar distillation, including research on heat recycling capabilities and other related factors in multistage solar distillation systems. Solar stills can be used in various applications to provide safe and clean water from natural sources. This study is based on field data collected, analysed, and interpreted over ten (10) months. The solar still operated at atmospheric pressure and produced a distillate by evaporating saline water (SW) at ~ 100 °C. The maximum SW preheating was 75.5 °C with 30,821.04 kJ/m2 day collected by the solar collectors. The corresponding overall thermal efficiency of the test rig was 33.83%. The overall thermal efficiency decreased with increasing wind speed, averaging at 3.12 m/s to 28.31% due to increased heat loss to the environment when 30,780 kJ/m2day was collected. It further declined to 5.89% with low meteorological conditions of 209.81 W/m2, 15.66 °C and 2.66 m/s, respectively, on average. However, the benefits of increased wind speed were enhanced condensation and productivity. The study also found that the ideal thermal energy delivery rate was $$\sim$$ 600 W/m2 or an impulsive mode at higher solar insolation. A balanced condensation rate, SW preheating, heat recovery and overall thermal efficiency can be achieved at this delivery rate. A significant correlation was observed, indicating that the simultaneous increase in the average heat input rate and wind velocities positively impacted distillate output. Conversely, low average wind velocity improved overall thermal efficiency, resulting in a distillate output of 6730 ml for the five stacked stages, despite a slight discrepancy of 3.2 W/m2 in the heat input rate.
目前的研究补充了太阳能蒸馏的广泛研究,包括对多级太阳能蒸馏系统的热回收能力和其他相关因素的研究。太阳能蒸馏器可以在各种应用中使用,从自然来源提供安全和清洁的水。本研究基于十(10)个月收集、分析和解释的现场数据。太阳能蒸馏器在大气压下运行,并通过在100°C下蒸发盐水(SW)产生馏出物。最大SW预热温度为75.5°C,太阳能集热器收集30,821.04 kJ/m2 day。相应的试验台整体热效率为33.83%. The overall thermal efficiency decreased with increasing wind speed, averaging at 3.12 m/s to 28.31% due to increased heat loss to the environment when 30,780 kJ/m2day was collected. It further declined to 5.89% with low meteorological conditions of 209.81 W/m2, 15.66 °C and 2.66 m/s, respectively, on average. However, the benefits of increased wind speed were enhanced condensation and productivity. The study also found that the ideal thermal energy delivery rate was $$\sim$$ 600 W/m2 or an impulsive mode at higher solar insolation. A balanced condensation rate, SW preheating, heat recovery and overall thermal efficiency can be achieved at this delivery rate. A significant correlation was observed, indicating that the simultaneous increase in the average heat input rate and wind velocities positively impacted distillate output. Conversely, low average wind velocity improved overall thermal efficiency, resulting in a distillate output of 6730 ml for the five stacked stages, despite a slight discrepancy of 3.2 W/m2 in the heat input rate.