Incorporation of N-doped biochar into zero-valent iron for efficient reductive degradation of neonicotinoids: mechanism and performance

IF 13.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Biochar Pub Date : 2023-11-27 DOI:10.1007/s42773-023-00280-4
Xiangying Li, Xiangyu Zhang, Peng Zhang, Xinhua Wang, Hongwen Sun, Yongyue Lu, Le Jiao, Chenglan Liu
{"title":"Incorporation of N-doped biochar into zero-valent iron for efficient reductive degradation of neonicotinoids: mechanism and performance","authors":"Xiangying Li, Xiangyu Zhang, Peng Zhang, Xinhua Wang, Hongwen Sun, Yongyue Lu, Le Jiao, Chenglan Liu","doi":"10.1007/s42773-023-00280-4","DOIUrl":null,"url":null,"abstract":"<p>The extensive use of neonicotinoids on food crops for pest management has resulted in substantial environmental contamination. It is imperative to develop an effective remediation material and technique as well as to determine the evolution pathways of products. Here, novel ball-milled nitrogen-doped biochar (NBC)-modified zero-valent iron (ZVI) composites (named MNBC-ZVI) were fabricated and applied to degrading neonicotinoids. Based on the characterization results, NBC incorporation introduced N-doped sites and new allying heterojunctions and achieved surface charge redistribution, rapid electron transfer, and higher hydrophobicity of ZVI particles. As a result, the interaction between ZVI particles and thiamethoxam (a typical neonicotinoid) was improved, and the adsorption–desorption and reductive degradation of thiamethoxam and ·H generation steps were optimized. MNBC-ZVI could rapidly degrade 100% of 10 mg·L<sup>−1</sup> thiamethoxam within 360 min, its reduction rate constant was 12.1-fold greater than that of pristine ZVI, and the electron efficiency increased from 29.7% to 57.8%. This improved reactivity and selectivity resulted from increased electron transfer, enhanced hydrophobicity, and reduced accumulation of iron mud. Moreover, the degradation of neonicotinoids occurred mainly via nitrate reduction and dichlorination, and toxicity tests with degradation intermediates revealed that neonicotinoids undergo rapid detoxification. Remarkably, MNBC-ZVI also presented favorable tolerance to various anions, humic acid, wastewater and contaminated soil, as well as high reusability. This work offers an efficient and economic biochar-ZVI remediation technology for the rapid degradation and detoxification of neonicotinoids, significantly contributes to knowledge on the relevant removal mechanism and further advances the synthesis of highly reactive and environmentally friendly materials.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"2 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-023-00280-4","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

Abstract

The extensive use of neonicotinoids on food crops for pest management has resulted in substantial environmental contamination. It is imperative to develop an effective remediation material and technique as well as to determine the evolution pathways of products. Here, novel ball-milled nitrogen-doped biochar (NBC)-modified zero-valent iron (ZVI) composites (named MNBC-ZVI) were fabricated and applied to degrading neonicotinoids. Based on the characterization results, NBC incorporation introduced N-doped sites and new allying heterojunctions and achieved surface charge redistribution, rapid electron transfer, and higher hydrophobicity of ZVI particles. As a result, the interaction between ZVI particles and thiamethoxam (a typical neonicotinoid) was improved, and the adsorption–desorption and reductive degradation of thiamethoxam and ·H generation steps were optimized. MNBC-ZVI could rapidly degrade 100% of 10 mg·L−1 thiamethoxam within 360 min, its reduction rate constant was 12.1-fold greater than that of pristine ZVI, and the electron efficiency increased from 29.7% to 57.8%. This improved reactivity and selectivity resulted from increased electron transfer, enhanced hydrophobicity, and reduced accumulation of iron mud. Moreover, the degradation of neonicotinoids occurred mainly via nitrate reduction and dichlorination, and toxicity tests with degradation intermediates revealed that neonicotinoids undergo rapid detoxification. Remarkably, MNBC-ZVI also presented favorable tolerance to various anions, humic acid, wastewater and contaminated soil, as well as high reusability. This work offers an efficient and economic biochar-ZVI remediation technology for the rapid degradation and detoxification of neonicotinoids, significantly contributes to knowledge on the relevant removal mechanism and further advances the synthesis of highly reactive and environmentally friendly materials.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
掺n生物炭在零价铁中高效还原降解新烟碱:机理和性能
为防治病虫害,在粮食作物上广泛使用新烟碱类杀虫剂,造成了严重的环境污染。开发有效的修复材料和技术以及确定产物的进化途径是当务之急。本文制备了一种新型的球磨掺氮生物炭(NBC)修饰零价铁(ZVI)复合材料(MNBC-ZVI),并将其应用于新烟碱类化合物的降解。基于表征结果,NBC掺入引入了n掺杂位点和新的结盟异质结,实现了ZVI粒子的表面电荷重分配、快速电子转移和更高的疏水性。改善了ZVI颗粒与噻虫脒(一种典型的新烟碱)的相互作用,优化了噻虫脒的吸附-解吸、还原降解和·H生成步骤。MNBC-ZVI能在360 min内100%快速降解10 mg·L−1噻虫嗪,其还原速率常数是原始ZVI的12.1倍,电子效率由29.7%提高到57.8%。这种改进的反应性和选择性是由于增加了电子转移,增强了疏水性,减少了铁泥的积累。此外,新烟碱类化合物的降解主要是通过硝酸盐还原和二氯作用进行的,对降解中间体的毒性试验表明,新烟碱类化合物可以快速解毒。值得注意的是,MNBC-ZVI对各种阴离子、腐殖酸、废水和污染土壤具有良好的耐受性,并且具有较高的重复利用性。本研究为新烟碱类化合物的快速降解和解毒提供了一种高效、经济的生物炭- zvi修复技术,对新烟碱类化合物的脱毒机理的研究具有重要意义,并将进一步推动高活性、环保材料的合成。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochar
Biochar Multiple-
CiteScore
18.60
自引率
10.20%
发文量
61
期刊介绍: Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.
期刊最新文献
Advancing modified biochar for sustainable agriculture: a comprehensive review on characterization, analysis, and soil performance. Analyzing the trends and hotspots of biochar’s applications in agriculture, environment, and energy: a bibliometrics study for 2022 and 2023 Oyster shell facilitates the green production of nitrogen-doped porous biochar from macroalgae: a case study for removing atrazine from water Novel utilization exploration for the dephosphorization waste of Ca–modified biochar: enhanced removal of heavy metal ions from water Plant performance and soil–plant carbon relationship response to different biochar types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1