{"title":"A survey on facial image deblurring","authors":"Bingnan Wang, Fanjiang Xu, Quan Zheng","doi":"10.1007/s41095-023-0336-6","DOIUrl":null,"url":null,"abstract":"<p>When a facial image is blurred, it significantly affects high-level vision tasks such as face recognition. The purpose of facial image deblurring is to recover a clear image from a blurry input image, which can improve the recognition accuracy, etc. However, general deblurring methods do not perform well on facial images. Therefore, some face deblurring methods have been proposed to improve performance by adding semantic or structural information as specific priors according to the characteristics of the facial images. In this paper, we survey and summarize recently published methods for facial image deblurring, most of which are based on deep learning. First, we provide a brief introduction to the modeling of image blurring. Next, we summarize face deblurring methods into two categories: model-based methods and deep learning-based methods. Furthermore, we summarize the datasets, loss functions, and performance evaluation metrics commonly used in the neural network training process. We show the performance of classical methods on these datasets and metrics and provide a brief discussion on the differences between model-based and learning-based methods. Finally, we discuss the current challenges and possible future research directions.\n</p>","PeriodicalId":37301,"journal":{"name":"Computational Visual Media","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Visual Media","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s41095-023-0336-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
When a facial image is blurred, it significantly affects high-level vision tasks such as face recognition. The purpose of facial image deblurring is to recover a clear image from a blurry input image, which can improve the recognition accuracy, etc. However, general deblurring methods do not perform well on facial images. Therefore, some face deblurring methods have been proposed to improve performance by adding semantic or structural information as specific priors according to the characteristics of the facial images. In this paper, we survey and summarize recently published methods for facial image deblurring, most of which are based on deep learning. First, we provide a brief introduction to the modeling of image blurring. Next, we summarize face deblurring methods into two categories: model-based methods and deep learning-based methods. Furthermore, we summarize the datasets, loss functions, and performance evaluation metrics commonly used in the neural network training process. We show the performance of classical methods on these datasets and metrics and provide a brief discussion on the differences between model-based and learning-based methods. Finally, we discuss the current challenges and possible future research directions.
期刊介绍:
Computational Visual Media is a peer-reviewed open access journal. It publishes original high-quality research papers and significant review articles on novel ideas, methods, and systems relevant to visual media.
Computational Visual Media publishes articles that focus on, but are not limited to, the following areas:
• Editing and composition of visual media
• Geometric computing for images and video
• Geometry modeling and processing
• Machine learning for visual media
• Physically based animation
• Realistic rendering
• Recognition and understanding of visual media
• Visual computing for robotics
• Visualization and visual analytics
Other interdisciplinary research into visual media that combines aspects of computer graphics, computer vision, image and video processing, geometric computing, and machine learning is also within the journal''s scope.
This is an open access journal, published quarterly by Tsinghua University Press and Springer. The open access fees (article-processing charges) are fully sponsored by Tsinghua University, China. Authors can publish in the journal without any additional charges.