Research on Image Super-Resolution Reconstruction Technology Based on Unsupervised Learning

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE International Journal of Aerospace Engineering Pub Date : 2023-11-21 DOI:10.1155/2023/8860842
Shuo Han, Bo Mo, Jie Zhao, Bolin Pan, Yiqi Wang
{"title":"Research on Image Super-Resolution Reconstruction Technology Based on Unsupervised Learning","authors":"Shuo Han, Bo Mo, Jie Zhao, Bolin Pan, Yiqi Wang","doi":"10.1155/2023/8860842","DOIUrl":null,"url":null,"abstract":"Affected by the movement of drones, missiles, and other aircraft platforms and the limitation of the accuracy of image sensors, the obtained images have low-resolution and serious loss of image details. Aiming at these problems, this paper studies the image super-resolution reconstruction technology. Firstly, a natural image degradation model based on a generative adversarial network is designed to learn the degradation relationship between image blocks within the image; then, an unsupervised learning residual network is designed based on the idea of image self-similarity to complete image super-resolution reconstruction. The experimental results show that the unsupervised super-resolution reconstruction algorithm is equivalent to the mainstream supervised learning algorithm under ideal conditions. Compared to mainstream algorithms, this algorithm has significantly improved its various indicators in real-world environments under nonideal conditions.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/8860842","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Affected by the movement of drones, missiles, and other aircraft platforms and the limitation of the accuracy of image sensors, the obtained images have low-resolution and serious loss of image details. Aiming at these problems, this paper studies the image super-resolution reconstruction technology. Firstly, a natural image degradation model based on a generative adversarial network is designed to learn the degradation relationship between image blocks within the image; then, an unsupervised learning residual network is designed based on the idea of image self-similarity to complete image super-resolution reconstruction. The experimental results show that the unsupervised super-resolution reconstruction algorithm is equivalent to the mainstream supervised learning algorithm under ideal conditions. Compared to mainstream algorithms, this algorithm has significantly improved its various indicators in real-world environments under nonideal conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于无监督学习的图像超分辨率重建技术研究
受无人机、导弹等飞机平台运动的影响以及图像传感器精度的限制,获得的图像分辨率较低,图像细节丢失严重。针对这些问题,本文研究了图像超分辨率重建技术。首先,设计了基于生成式对抗网络的自然图像退化模型,学习图像内部图像块之间的退化关系;然后,基于图像自相似的思想,设计了无监督学习残差网络,完成图像超分辨率重建;实验结果表明,在理想条件下,无监督超分辨重建算法与主流的监督学习算法相当。与主流算法相比,在非理想条件下,该算法在现实环境中的各项指标有了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
期刊最新文献
Comparative Study and Airspeed Sensitivity Analysis of Full-Wing Solar-Powered UAVs Using Rigid-Body, Multibody, and Rigid-Flexible Combo Models Enhanced Multi-UAV Path Planning in Complex Environments With Voronoi-Based Obstacle Modelling and Q-Learning Multi-UAV Cooperative Air Combat Target Assignment Method Based on VNS-IBPSO in Complex Dynamic Environment A Novel Strategy for Hypersonic Vehicle With Complex Distributed No-Fly Zone Constraints Development of Anisogrid Lattice Composite Structures for Fighter Wing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1