Evaluation and interpretation of driving risks: Automobile claim frequency modeling with telematics data

IF 2.1 4区 数学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Statistical Analysis and Data Mining Pub Date : 2022-09-28 DOI:10.1002/sam.11599
Yaqian Gao, Yifan Huang, Shengwang Meng
{"title":"Evaluation and interpretation of driving risks: Automobile claim frequency modeling with telematics data","authors":"Yaqian Gao, Yifan Huang, Shengwang Meng","doi":"10.1002/sam.11599","DOIUrl":null,"url":null,"abstract":"With the development of vehicle telematics and data mining technology, usage-based insurance (UBI) has aroused widespread interest from both academia and industry. The extensive driving behavior features make it possible to further understand the risks of insured vehicles, but pose challenges in the identification and interpretation of important ratemaking factors. This study, based on the telematics data of policyholders in China's mainland, analyzes insurance claim frequency of commercial trucks using both Poisson regression and several machine learning models, including regression tree, random forest, gradient boosting tree, XGBoost and neural network. After selecting the best model, we analyze feature importance, feature effects and the contribution of each feature to the prediction from an actuarial perspective. Our empirical study shows that XGBoost greatly outperforms the traditional models and detects some important risk factors, such as the average speed, the average mileage traveled per day, the fraction of night driving, the number of sudden brakes and the fraction of left/right turns at intersections. These features usually have a nonlinear effect on driving risk, and there are complex interactions between features. To further distinguish high−/low-risk drivers, we run supervised clustering for risk segmentation according to drivers' driving habits. In summary, this study not only provide a more accurate prediction of driving risk, but also greatly satisfy the interpretability requirements of insurance regulators and risk management.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11599","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the development of vehicle telematics and data mining technology, usage-based insurance (UBI) has aroused widespread interest from both academia and industry. The extensive driving behavior features make it possible to further understand the risks of insured vehicles, but pose challenges in the identification and interpretation of important ratemaking factors. This study, based on the telematics data of policyholders in China's mainland, analyzes insurance claim frequency of commercial trucks using both Poisson regression and several machine learning models, including regression tree, random forest, gradient boosting tree, XGBoost and neural network. After selecting the best model, we analyze feature importance, feature effects and the contribution of each feature to the prediction from an actuarial perspective. Our empirical study shows that XGBoost greatly outperforms the traditional models and detects some important risk factors, such as the average speed, the average mileage traveled per day, the fraction of night driving, the number of sudden brakes and the fraction of left/right turns at intersections. These features usually have a nonlinear effect on driving risk, and there are complex interactions between features. To further distinguish high−/low-risk drivers, we run supervised clustering for risk segmentation according to drivers' driving habits. In summary, this study not only provide a more accurate prediction of driving risk, but also greatly satisfy the interpretability requirements of insurance regulators and risk management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
驾驶风险的评估与解释:基于远程信息处理数据的汽车索赔频率建模
随着车载信息处理技术和数据挖掘技术的发展,基于使用的保险(UBI)引起了学术界和产业界的广泛关注。广泛的驾驶行为特征使进一步了解投保车辆的风险成为可能,但在识别和解释重要的费率制定因素方面提出了挑战。本研究基于中国大陆地区投保人的远程信息处理数据,采用泊松回归和回归树、随机森林、梯度增强树、XGBoost和神经网络等机器学习模型,对商业卡车的保险理赔频率进行了分析。选择最佳模型后,从精算的角度分析特征重要性、特征效应以及各特征对预测的贡献。我们的实证研究表明,XGBoost大大优于传统模型,并能检测到一些重要的风险因素,如平均速度、平均日行驶里程、夜间驾驶比例、突然刹车次数和十字路口左右转弯比例。这些特征通常对驾驶风险具有非线性影响,并且特征之间存在复杂的相互作用。为了进一步区分高/低风险驾驶员,我们根据驾驶员的驾驶习惯运行监督聚类进行风险分割。综上所述,本研究不仅提供了更准确的驾驶风险预测,而且极大地满足了保险监管机构和风险管理机构的可解释性要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Analysis and Data Mining
Statistical Analysis and Data Mining COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.20
自引率
7.70%
发文量
43
期刊介绍: Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce. The focus of the journal is on papers which satisfy one or more of the following criteria: Solve data analysis problems associated with massive, complex datasets Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research. Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models Provide survey to prominent research topics.
期刊最新文献
Quantifying Epistemic Uncertainty in Binary Classification via Accuracy Gain A new logarithmic multiplicative distortion for correlation analysis Revisiting Winnow: A modified online feature selection algorithm for efficient binary classification A random forest approach for interval selection in functional regression Characterizing climate pathways using feature importance on echo state networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1