Study of Mechanical Properties of Silicate Minerals by Molecular Dynamics Simulation

IF 1.6 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY Journal of Advanced Concrete Technology Pub Date : 2023-11-22 DOI:10.3151/jact.21.920
Takayoshi Fujimura, Yuji Hakozaki, Shunsuke Sakuragi, Yuu Nakajima, Kenta Murakami, Kiyoteru Suzuki, Ippei Maruyama, Takahiro Ohkubo
{"title":"Study of Mechanical Properties of Silicate Minerals by Molecular Dynamics Simulation","authors":"Takayoshi Fujimura, Yuji Hakozaki, Shunsuke Sakuragi, Yuu Nakajima, Kenta Murakami, Kiyoteru Suzuki, Ippei Maruyama, Takahiro Ohkubo","doi":"10.3151/jact.21.920","DOIUrl":null,"url":null,"abstract":"</p><p>The aging and damage of concrete buildings and structures is a problem in modern society. This is especially true for nuclear power plant buildings, which are required to have high safety standards. In this study, molecular dynamics simulations were performed to obtain mechanical properties for silicate minerals, including quartz, which is used as an aggregate in concrete. We also attempted to clarify phenomena including mechanical fracture. Mechanical properties of each mineral (Young's modulus, Poisson's ratio, and maximum stress) were obtained by performing tensile simulations on 10 silicate minerals which are α-quartz, Orthoclase, Microcline, Albite, Oligoclase, Andesine, Labradorite, Augite, Diopside and Forsterite. Minerals other than α-quartz were highly anisotropic with respect to Young's modulus. The maximum stress was highest for α-quartz, but once a fracture started, the development of large fractures progressed at once and the stress relaxed rapidly. Deformation and fracture of the mineral in response to strain were analyzed by extracting the non-affine component of the local displacement of atoms in tensile simulations. This analysis was able to explain the behavior of the stress-strain curve for each mineral. We also investigated how the composition of a mineral affects its mechanical fracture.</p>\n<p></p>","PeriodicalId":14868,"journal":{"name":"Journal of Advanced Concrete Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Concrete Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3151/jact.21.920","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The aging and damage of concrete buildings and structures is a problem in modern society. This is especially true for nuclear power plant buildings, which are required to have high safety standards. In this study, molecular dynamics simulations were performed to obtain mechanical properties for silicate minerals, including quartz, which is used as an aggregate in concrete. We also attempted to clarify phenomena including mechanical fracture. Mechanical properties of each mineral (Young's modulus, Poisson's ratio, and maximum stress) were obtained by performing tensile simulations on 10 silicate minerals which are α-quartz, Orthoclase, Microcline, Albite, Oligoclase, Andesine, Labradorite, Augite, Diopside and Forsterite. Minerals other than α-quartz were highly anisotropic with respect to Young's modulus. The maximum stress was highest for α-quartz, but once a fracture started, the development of large fractures progressed at once and the stress relaxed rapidly. Deformation and fracture of the mineral in response to strain were analyzed by extracting the non-affine component of the local displacement of atoms in tensile simulations. This analysis was able to explain the behavior of the stress-strain curve for each mineral. We also investigated how the composition of a mineral affects its mechanical fracture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅酸盐矿物力学性质的分子动力学模拟研究
混凝土建筑物和构筑物的老化和损坏是现代社会的一个问题。对于要求具有高安全标准的核电站建筑来说尤其如此。在这项研究中,进行了分子动力学模拟,以获得硅酸盐矿物的力学性能,包括用作混凝土骨料的石英。我们还试图澄清包括机械断裂在内的现象。通过对α-石英、正长石、微斜长石、钠长石、寡长石、安山石、拉布拉多石、奥辉石、透辉石和橄榄石等10种硅酸盐矿物进行拉伸模拟,得到了各矿物的力学性质(杨氏模量、泊松比和最大应力)。除α-石英外,其它矿物的杨氏模量各向异性较强。α-石英的最大应力最大,但一旦裂缝开始,大裂缝立即发育,应力迅速松弛。通过提取拉伸模拟中原子局部位移的非仿射分量,分析了矿物在应变作用下的变形和断裂。这种分析能够解释每种矿物的应力-应变曲线的行为。我们还研究了矿物成分如何影响其机械断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Advanced Concrete Technology
Journal of Advanced Concrete Technology 工程技术-材料科学:综合
CiteScore
3.70
自引率
10.00%
发文量
45
审稿时长
3.5 months
期刊介绍: JACT is fast. Only 5 to 7 months from submission to publishing thanks to electronic file exchange between you, the reviewers and the editors. JACT is high quality. Peer-reviewed by internationally renowned experts who return review comments to ensure the highest possible quality. JACT is transparent. The status of your manuscript from submission to publishing can be viewed on our website, greatly reducing the frustration of being kept in the dark, possibly for over a year in the case of some journals. JACT is cost-effective. Submission and subscription are free of charge . Full-text PDF files are available for the authors to open at their web sites. Scope: *Materials: -Material properties -Fresh concrete -Hardened concrete -High performance concrete -Development of new materials -Fiber reinforcement *Maintenance and Rehabilitation: -Durability and repair -Strengthening/Rehabilitation -LCC for concrete structures -Environmant conscious materials *Structures: -Design and construction of RC and PC Structures -Seismic design -Safety against environmental disasters -Failure mechanism and non-linear analysis/modeling -Composite and mixed structures *Other: -Monitoring -Aesthetics of concrete structures -Other concrete related topics
期刊最新文献
Multi–sensory Monitoring and Non–destructive Testing of New Materials for Concrete Engineered Barrier Systems Ion Evolution in Pore Solution of Alkali-activated Slag System and Its Effect on Passivation Behaviour of Steel Bars Carbonated Concrete Slurry Waste as Supplementary Cementitious Material Investigating the Influence of SCMs on Mechanical Performance through Experimental Feret's Coefficients in Low-carbon Concrete Structural Performance of RC Members Affected by Alkali–silica Reaction According to Crack Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1