Creating a large language model of a philosopher

IF 1.8 3区 心理学 Q1 LINGUISTICS Mind & Language Pub Date : 2023-07-12 DOI:10.1111/mila.12466
Eric Schwitzgebel, David Schwitzgebel, Anna Strasser
{"title":"Creating a large language model of a philosopher","authors":"Eric Schwitzgebel, David Schwitzgebel, Anna Strasser","doi":"10.1111/mila.12466","DOIUrl":null,"url":null,"abstract":"Can large language models produce expert-quality philosophical texts? To investigate this, we fine-tuned GPT-3 with the works of philosopher Daniel Dennett. To evaluate the model, we asked the real Dennett 10 philosophical questions and then posed the same questions to the language model, collecting four responses for each question without cherry-picking. Experts on Dennett's work succeeded at distinguishing the Dennett-generated and machine-generated answers above chance but substantially short of our expectations. Philosophy blog readers performed similarly to the experts, while ordinary research participants were near chance distinguishing GPT-3's responses from those of an “actual human philosopher”.","PeriodicalId":51472,"journal":{"name":"Mind & Language","volume":"10 4 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mind & Language","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/mila.12466","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Can large language models produce expert-quality philosophical texts? To investigate this, we fine-tuned GPT-3 with the works of philosopher Daniel Dennett. To evaluate the model, we asked the real Dennett 10 philosophical questions and then posed the same questions to the language model, collecting four responses for each question without cherry-picking. Experts on Dennett's work succeeded at distinguishing the Dennett-generated and machine-generated answers above chance but substantially short of our expectations. Philosophy blog readers performed similarly to the experts, while ordinary research participants were near chance distinguishing GPT-3's responses from those of an “actual human philosopher”.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
创建一个哲学家的大型语言模型
大型语言模型能产生专家级的哲学文本吗?为了研究这个问题,我们用哲学家丹尼尔·丹尼特的作品对GPT-3进行了微调。为了评估这个模型,我们问了真正的丹尼特10个哲学问题,然后向语言模型提出了同样的问题,为每个问题收集了4个答案,没有挑选。研究丹尼特工作的专家成功地区分了丹尼特生成和机器生成的答案,但远远低于我们的预期。哲学博客读者的表现与专家相似,而普通的研究参与者几乎有机会将GPT-3的反应与“真正的人类哲学家”的反应区分开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mind & Language
Mind & Language Multiple-
CiteScore
4.90
自引率
0.00%
发文量
58
期刊最新文献
Vigilance and mind wandering Self‐location in perceptual experience: A top‐down account Emotion descriptions and musical expressiveness In defense of language‐independent flexibility, or: What rodents and humans can do without language Craving for drugs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1