Experimental Validations of Reconstructed Excitation Forces Acting Inside a Solid Enclosure. Part I: Exterior Region

IF 1.3 3区 物理与天体物理 Q3 ACOUSTICS Journal of Theoretical and Computational Acoustics Pub Date : 2022-09-30 DOI:10.1142/s2591728522500086
Yazhong Lu, Lingguang Chen, Pan Zhou, Sean F. Wu
{"title":"Experimental Validations of Reconstructed Excitation Forces Acting Inside a Solid Enclosure. Part I: Exterior Region","authors":"Yazhong Lu, Lingguang Chen, Pan Zhou, Sean F. Wu","doi":"10.1142/s2591728522500086","DOIUrl":null,"url":null,"abstract":"<p>This paper presents the experimental validations of reconstructing the characteristics of the excitation forces that act inside a vibrating structure, which includes the location, type, amplitude, and spectrum, based on a single set of measurements of the normal surface velocity on the exterior surface by using the modified Helmholtz Equation Least Squares (HELS) method, as if one could see through this solid structure. Phase I of this paper shows the reconstruction of the vibroacoustic responses in the exterior region of the structure, including the field acoustic pressure, the surface acoustic pressure, the normal surface velocity or Operational Deflection Shape (ODS), the normal component of the time-averaged acoustic intensity, and the time-averaged acoustic power. Phase II of this paper illustrates the reconstruction of the excitation forces with the fluid-loading effects taken into consideration, based on the vibroacoustic responses reconstructed in the exterior region. The significance of the study, namely, the interrelationships among the excitation force, structural vibration, and acoustic radiation is discussed. The knowledge thus acquired may be important for engineers to analyze various complex noise and vibration issues in practice and to come up with the most cost-effective noise and vibration mitigation strategies.</p>","PeriodicalId":55976,"journal":{"name":"Journal of Theoretical and Computational Acoustics","volume":"47 18","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Computational Acoustics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s2591728522500086","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the experimental validations of reconstructing the characteristics of the excitation forces that act inside a vibrating structure, which includes the location, type, amplitude, and spectrum, based on a single set of measurements of the normal surface velocity on the exterior surface by using the modified Helmholtz Equation Least Squares (HELS) method, as if one could see through this solid structure. Phase I of this paper shows the reconstruction of the vibroacoustic responses in the exterior region of the structure, including the field acoustic pressure, the surface acoustic pressure, the normal surface velocity or Operational Deflection Shape (ODS), the normal component of the time-averaged acoustic intensity, and the time-averaged acoustic power. Phase II of this paper illustrates the reconstruction of the excitation forces with the fluid-loading effects taken into consideration, based on the vibroacoustic responses reconstructed in the exterior region. The significance of the study, namely, the interrelationships among the excitation force, structural vibration, and acoustic radiation is discussed. The knowledge thus acquired may be important for engineers to analyze various complex noise and vibration issues in practice and to come up with the most cost-effective noise and vibration mitigation strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作用于固体外壳内的重构激励力的实验验证。第一部分:外部区域
本文利用改进的亥姆霍兹方程最小二乘(HELS)方法,基于一组外表面法向表面速度的测量数据,对振动结构内部的激励力特征(包括位置、类型、振幅和频谱)进行了实验验证,就好像人们可以透过这个实体结构一样。本文的第一阶段展示了结构外部区域的振动声响应的重建,包括现场声压、表面声压、法向表面速度或工作挠度形状(ODS)、时均声强的法向分量和时均声功率。本文的第二阶段是基于外部区域重建的振动声响应,在考虑流体加载效应的情况下重建激励力。讨论了本研究的意义,即激振力、结构振动和声辐射三者之间的相互关系。由此获得的知识可能对工程师在实践中分析各种复杂的噪声和振动问题以及提出最具成本效益的噪声和振动缓解策略非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Theoretical and Computational Acoustics
Journal of Theoretical and Computational Acoustics Computer Science-Computer Science Applications
CiteScore
2.90
自引率
42.10%
发文量
26
期刊介绍: The aim of this journal is to provide an international forum for the dissemination of the state-of-the-art information in the field of Computational Acoustics. Topics covered by this journal include research and tutorial contributions in OCEAN ACOUSTICS (a subject of active research in relation with sonar detection and the design of noiseless ships), SEISMO-ACOUSTICS (of concern to earthquake science and engineering, and also to those doing underground prospection like searching for petroleum), AEROACOUSTICS (which includes the analysis of noise created by aircraft), COMPUTATIONAL METHODS, and SUPERCOMPUTING. In addition to the traditional issues and problems in computational methods, the journal also considers theoretical research acoustics papers which lead to large-scale scientific computations.
期刊最新文献
Further development of rotating beamforming techniques using asynchronous measurements Virtual rotating array for near-field localization of rotating sound sources Parameter Identification of a Large-scale Vibroacoustic Finite Element Model with a One-dimensional Convolutional Neural Network Update on the Ivory-billed Woodpecker (Campephilus principalis) Scandal For Special Issue on Inverse Problems in Acoustics Coherent noise denoising in beamforming based on non-convex robust principal component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1