Daniel Sossover, Kelsey Burrows, Stefan Kahl, Connor M. Wood
{"title":"Using the BirdNET algorithm to identify wolves, coyotes, and potentially their interactions in a large audio dataset","authors":"Daniel Sossover, Kelsey Burrows, Stefan Kahl, Connor M. Wood","doi":"10.1007/s13364-023-00725-y","DOIUrl":null,"url":null,"abstract":"<p>Passive acoustic monitoring has emerged as a scalable, noninvasive tool for monitoring many acoustically active animals. Bioacoustics has long been employed to study wolves and coyotes, but the process of extracting relevant signals (e.g., territorial vocalizations) from large audio datasets remains a substantial limitation. The BirdNET algorithm is a machine learning tool originally designed to identify birds by sound, but it was recently expanded to include gray wolves (<i>Canis lupus</i>) and coyotes (<i>C. latrans</i>). We used BirdNET to analyze 10,500 h of passively recorded audio from the northern Sierra Nevada, USA, in which both species are known to occur. For wolves, real-world precision was low, but recall was high; careful post-processing of results may be necessary for an efficient workflow. For coyotes, recall and precision were high. BirdNET enabled us to identify wolves, coyotes, and apparent intra- and interspecific acoustic interactions. Because BirdNET is freely available and requires no computer science expertise to use, it may facilitate the application of passive acoustic surveys to the research and management of wolves and coyotes, two species with continental distributions that are frequently involved in high-profile and sometimes contention management decisions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13364-023-00725-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Passive acoustic monitoring has emerged as a scalable, noninvasive tool for monitoring many acoustically active animals. Bioacoustics has long been employed to study wolves and coyotes, but the process of extracting relevant signals (e.g., territorial vocalizations) from large audio datasets remains a substantial limitation. The BirdNET algorithm is a machine learning tool originally designed to identify birds by sound, but it was recently expanded to include gray wolves (Canis lupus) and coyotes (C. latrans). We used BirdNET to analyze 10,500 h of passively recorded audio from the northern Sierra Nevada, USA, in which both species are known to occur. For wolves, real-world precision was low, but recall was high; careful post-processing of results may be necessary for an efficient workflow. For coyotes, recall and precision were high. BirdNET enabled us to identify wolves, coyotes, and apparent intra- and interspecific acoustic interactions. Because BirdNET is freely available and requires no computer science expertise to use, it may facilitate the application of passive acoustic surveys to the research and management of wolves and coyotes, two species with continental distributions that are frequently involved in high-profile and sometimes contention management decisions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.