{"title":"Design of layer-by-layer lipid-polymer hybrid nanoparticles to elicit oral bioavailability of buspirone hydrochloride","authors":"Pankaj Dangre, Kajal Sonawane, Kailas Moravkar, Anil Pethe, Shailesh Chalikwar, Vivek Borse","doi":"10.1080/00914037.2023.2255720","DOIUrl":null,"url":null,"abstract":"<p><b>Abstract</b></p><p>Polyelectrolyte multilayer (PEM) was developed through layer-by-layer (LbL) adsorption on sodium alginate on negatively charged lipid polymer hybrid nanoparticles (LPHNPs) for the delivery of Buspirone hydrochloride (BUH). The resultant BUH-LPHNPs (F2) showed a mean particle size of 166 ± 4.2 nm and zeta potential of −30.5 ± 1.52 mV. The BUH-LPHNPs were found to be stable and demonstrated controlled drug release kinetics. Further, the pharmacokinetic studies revealed a 3.29-fold rise in the oral bioavailability of formulation (F2) than BUH (pure). Thus, PEM fabricated through LbL technology could be explored for overcoming the bioavailability issue and targeted delivery for potential drug candidates.</p>","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"2 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymeric Materials and Polymeric Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00914037.2023.2255720","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Polyelectrolyte multilayer (PEM) was developed through layer-by-layer (LbL) adsorption on sodium alginate on negatively charged lipid polymer hybrid nanoparticles (LPHNPs) for the delivery of Buspirone hydrochloride (BUH). The resultant BUH-LPHNPs (F2) showed a mean particle size of 166 ± 4.2 nm and zeta potential of −30.5 ± 1.52 mV. The BUH-LPHNPs were found to be stable and demonstrated controlled drug release kinetics. Further, the pharmacokinetic studies revealed a 3.29-fold rise in the oral bioavailability of formulation (F2) than BUH (pure). Thus, PEM fabricated through LbL technology could be explored for overcoming the bioavailability issue and targeted delivery for potential drug candidates.
期刊介绍:
International Journal of Polymeric Materials and Polymeric Biomaterials is the official publication of the International Society for Biomedical Polymers and Polymeric Biomaterials (ISBPPB). This journal provides a forum for the publication of peer-reviewed, English language articles and select reviews on all aspects of polymeric materials and biomedical polymers. Being interdisciplinary in nature, this journal publishes extensive contributions in the areas of encapsulation and controlled release technologies to address innovation needs as well.