{"title":"An improvement of Random Node Generator for the uniform generation of capacities","authors":"Peiqi Sun, Michel Grabisch, Christophe Labreuche","doi":"10.1007/s10472-023-09911-9","DOIUrl":null,"url":null,"abstract":"<p>Capacity is an important tool in decision-making under risk and uncertainty and multi-criteria decision-making. When learning a capacity-based model, it is important to be able to generate uniformly a capacity. Due to the monotonicity constraints of a capacity, this task reveals to be very difficult. The classical Random Node Generator (RNG) algorithm is a fast-running speed capacity generator, however with poor performance. In this paper, we firstly present an exact algorithm for generating a <i>n</i> elements’ general capacity, usable when <span>\\(n < 5\\)</span>. Then, we present an improvement of the classical RNG by studying the distribution of the value of each element of a capacity. Furthermore, we divide it into two cases, the first one is the case without any conditions, and the second one is the case when some elements have been generated. Experimental results show that the performance of this improved algorithm is much better than the classical RNG while keeping a very reasonable computation time.</p>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"37 10 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10472-023-09911-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Capacity is an important tool in decision-making under risk and uncertainty and multi-criteria decision-making. When learning a capacity-based model, it is important to be able to generate uniformly a capacity. Due to the monotonicity constraints of a capacity, this task reveals to be very difficult. The classical Random Node Generator (RNG) algorithm is a fast-running speed capacity generator, however with poor performance. In this paper, we firstly present an exact algorithm for generating a n elements’ general capacity, usable when \(n < 5\). Then, we present an improvement of the classical RNG by studying the distribution of the value of each element of a capacity. Furthermore, we divide it into two cases, the first one is the case without any conditions, and the second one is the case when some elements have been generated. Experimental results show that the performance of this improved algorithm is much better than the classical RNG while keeping a very reasonable computation time.
期刊介绍:
Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning.
The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors.
Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.