Esterification of butyric acid with n-butanol: Kinetic study using experimental data and modeling

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL International Journal of Chemical Kinetics Pub Date : 2023-12-04 DOI:10.1002/kin.21701
Ashutosh Kumar Pathak, Madhusree Kundu
{"title":"Esterification of butyric acid with n-butanol: Kinetic study using experimental data and modeling","authors":"Ashutosh Kumar Pathak,&nbsp;Madhusree Kundu","doi":"10.1002/kin.21701","DOIUrl":null,"url":null,"abstract":"<p>Present study involves the investigation of the esterification kinetics between butyric acid and <i>n</i>-butanol. This reaction was conducted in a batch reactor, utilizing homogeneous methanesulfonic acid (MSA) catalyst. Response surface methodology (RSM) was conducted prior to the kinetic study using “Design Expert; version-11.0” for finding the causal factors influencing the conversion of butyric acid. Most important factors identified with their limits against conversions (during optimization of the process using RSM) were taken up to critically analyze the effect of them on butyric acid conversion. Concentration and activity-based model of the process were proposed assuming second order reversible reaction scheme using homogeneous MSA catalyst. During the study of non-ideal behavior of the system, UNIFAC model was adapted for assessing the activity coefficients of species present in equilibrated liquid phase. Experimental data were used to evaluate kinetic and thermodynamic parameters such as rate constants, activation energy, enthalpy, and entropy of the system. The endothermic nature of esterification was confirmed by positive value of enthalpy obtained. The effect of various levels of causal variables like temperature (60–90°C), catalyst concentration (0.5–1.5 wt.%), and molar ratio of <i>n</i>-butanol to butyric acid (1–3) on conversion kinetics of butyric acid was investigated during transient and equilibrium phase of the reaction. It has been observed that molar ratio of butanol to butyric acid has the highest influence on the conversion. The rate equation derived offered a kinetic and thermodynamic framework to the generated data. It also exhibits a notable degree of conformity of predicted data to the experimental ones and effectively characterizes the system across different reaction temperatures, reactant molar ratio, and catalyst concentration.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21701","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Present study involves the investigation of the esterification kinetics between butyric acid and n-butanol. This reaction was conducted in a batch reactor, utilizing homogeneous methanesulfonic acid (MSA) catalyst. Response surface methodology (RSM) was conducted prior to the kinetic study using “Design Expert; version-11.0” for finding the causal factors influencing the conversion of butyric acid. Most important factors identified with their limits against conversions (during optimization of the process using RSM) were taken up to critically analyze the effect of them on butyric acid conversion. Concentration and activity-based model of the process were proposed assuming second order reversible reaction scheme using homogeneous MSA catalyst. During the study of non-ideal behavior of the system, UNIFAC model was adapted for assessing the activity coefficients of species present in equilibrated liquid phase. Experimental data were used to evaluate kinetic and thermodynamic parameters such as rate constants, activation energy, enthalpy, and entropy of the system. The endothermic nature of esterification was confirmed by positive value of enthalpy obtained. The effect of various levels of causal variables like temperature (60–90°C), catalyst concentration (0.5–1.5 wt.%), and molar ratio of n-butanol to butyric acid (1–3) on conversion kinetics of butyric acid was investigated during transient and equilibrium phase of the reaction. It has been observed that molar ratio of butanol to butyric acid has the highest influence on the conversion. The rate equation derived offered a kinetic and thermodynamic framework to the generated data. It also exhibits a notable degree of conformity of predicted data to the experimental ones and effectively characterizes the system across different reaction temperatures, reactant molar ratio, and catalyst concentration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丁酸与正丁醇的酯化反应:用实验数据和模型进行动力学研究
研究了丁酸与正丁醇的酯化反应动力学。该反应在间歇式反应器中进行,采用均相甲基磺酸(MSA)催化剂。响应面法(RSM)在动力学研究之前使用“Design Expert;版本-11.0”用于寻找影响丁酸转化的原因因素。在使用RSM优化过程中,确定了最重要的因素及其对转化的限制,并对它们对丁酸转化的影响进行了批判性分析。采用均相MSA催化剂,建立了二级可逆反应的浓度和活性模型。在研究体系的非理想行为时,采用UNIFAC模型来评估平衡液相中存在的物种的活度系数。利用实验数据评估了体系的动力学和热力学参数,如速率常数、活化能、焓和熵。所得的正焓值证实了酯化反应的吸热性质。考察了温度(60 ~ 90℃)、催化剂浓度(0.5 ~ 1.5 wt.%)、正丁醇与丁酸的摩尔比(1 ~ 3)等不同程度的因果变量对反应过渡相和平衡相丁酸转化动力学的影响。观察到丁醇与丁酸的摩尔比对转化率的影响最大。推导出的速率方程为生成的数据提供了动力学和热力学框架。它还显示了预测数据与实验数据的显著一致性,并有效地表征了不同反应温度、反应物摩尔比和催化剂浓度下的体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
期刊最新文献
Issue Information Issue Information Force training neural network potential energy surface models Issue Information Folic acid as a green inhibitor for corrosion protection of Q235 carbon steel in 3.5 wt% NaCl solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1