P. Pabitha , K. Nivitha , C. Gunavathi , B. Panjavarnam
{"title":"A chameleon and remora search optimization algorithm for handling task scheduling uncertainty problem in cloud computing","authors":"P. Pabitha , K. Nivitha , C. Gunavathi , B. Panjavarnam","doi":"10.1016/j.suscom.2023.100944","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Task scheduling in </span>cloud computing is responsible for serving the user requirements. The scheduling strategy must handle the problems of high load over virtual machines (VMs), high-cost consumption and lengthier scheduling time effectively. The greatest challenge in the cloud computing environment is achieving the intended outcome of task scheduling under the uncertain user request demands as it is responsible for assigning specific resources to requests for achieving effective task completion. However, most of the task scheduling approaches contributed to the literature mainly focused on the design and development of </span>scheduling algorithms<span> but ignored to explore the impact of uncertain factors such as millions of instructions per second<span><span> (MIPS) and network bandwidth during the scheduling process. In this paper, A Chameleon and Remora Search </span>Optimization Algorithm<span><span> (CRSOA) is proposed for achieving efficient scheduling process by exploring the impact of MIPS and network bandwidth which directly affects the virtual machine (VM) performance. Further the work includes the uncertainty factors of task completion rate, load balance, scheduling cost and makespan in a simultaneous manner during the process of scheduling. It is formulated a multi-objective cloud task scheduling optimization model by integrating the merits of Chameleon Search Algorithm (CSA) and Remora Search Optimization Algorithm (RSOA) using a greedy methodology for simulating the real cloud computing task scheduling process. The simulation results evidently confirmed that the proposed CRSOA approach is minimizing the completion time and effective in handling the load balancing between the available VMs against other competitive </span>metaheuristic task scheduling algorithms. The experimental investigation of this CRSOA confirmed its predominance in minimizing the makespan by 18.96%, cost by 22.18%, and degree of imbalance by 20.54%, compared to the baseline approaches with different number of tasks and VMs.</span></span></span></p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"41 ","pages":"Article 100944"},"PeriodicalIF":3.8000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537923000999","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Task scheduling in cloud computing is responsible for serving the user requirements. The scheduling strategy must handle the problems of high load over virtual machines (VMs), high-cost consumption and lengthier scheduling time effectively. The greatest challenge in the cloud computing environment is achieving the intended outcome of task scheduling under the uncertain user request demands as it is responsible for assigning specific resources to requests for achieving effective task completion. However, most of the task scheduling approaches contributed to the literature mainly focused on the design and development of scheduling algorithms but ignored to explore the impact of uncertain factors such as millions of instructions per second (MIPS) and network bandwidth during the scheduling process. In this paper, A Chameleon and Remora Search Optimization Algorithm (CRSOA) is proposed for achieving efficient scheduling process by exploring the impact of MIPS and network bandwidth which directly affects the virtual machine (VM) performance. Further the work includes the uncertainty factors of task completion rate, load balance, scheduling cost and makespan in a simultaneous manner during the process of scheduling. It is formulated a multi-objective cloud task scheduling optimization model by integrating the merits of Chameleon Search Algorithm (CSA) and Remora Search Optimization Algorithm (RSOA) using a greedy methodology for simulating the real cloud computing task scheduling process. The simulation results evidently confirmed that the proposed CRSOA approach is minimizing the completion time and effective in handling the load balancing between the available VMs against other competitive metaheuristic task scheduling algorithms. The experimental investigation of this CRSOA confirmed its predominance in minimizing the makespan by 18.96%, cost by 22.18%, and degree of imbalance by 20.54%, compared to the baseline approaches with different number of tasks and VMs.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.