A Number Representation Systems Library Supporting New Representations Based on Morris Tapered Floating-point with Hidden Exponent Bit

Stefan-Dan Ciocirlan, Dumitrel Loghin
{"title":"A Number Representation Systems Library Supporting New Representations Based on Morris Tapered Floating-point with Hidden Exponent Bit","authors":"Stefan-Dan Ciocirlan, Dumitrel Loghin","doi":"arxiv-2310.09797","DOIUrl":null,"url":null,"abstract":"The introduction of posit reopened the debate about the utility of IEEE754 in\nspecific domains. In this context, we propose a high-level language (Scala)\nlibrary that aims to reduce the effort of designing and testing new number\nrepresentation systems (NRSs). The library's efficiency is tested with three\nnew NRSs derived from Morris Tapered Floating-Point by adding a hidden exponent\nbit. We call these NRSs MorrisHEB, MorrisBiasHEB, and MorrisUnaryHEB,\nrespectively. We show that they offer a better dynamic range, better decimal\naccuracy for unary operations, more exact results for addition (37.61% in the\ncase of MorrisUnaryHEB), and better average decimal accuracy for inexact\nresults on binary operations than posit and IEEE754. Going through existing\nbenchmarks in the literature, and favorable/unfavorable examples for\nIEEE754/posit, we show that these new NRSs produce similar (less than one\ndecimal accuracy difference) or even better results than IEEE754 and posit.\nGiven the entire spectrum of results, there are arguments for MorrisBiasHEB to\nbe used as a replacement for IEEE754 in general computations. MorrisUnaryHEB\nhas a more populated ``golden zone'' (+13.6%) and a better dynamic range (149X)\nthan posit, making it a candidate for machine learning computations.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"16 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.09797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The introduction of posit reopened the debate about the utility of IEEE754 in specific domains. In this context, we propose a high-level language (Scala) library that aims to reduce the effort of designing and testing new number representation systems (NRSs). The library's efficiency is tested with three new NRSs derived from Morris Tapered Floating-Point by adding a hidden exponent bit. We call these NRSs MorrisHEB, MorrisBiasHEB, and MorrisUnaryHEB, respectively. We show that they offer a better dynamic range, better decimal accuracy for unary operations, more exact results for addition (37.61% in the case of MorrisUnaryHEB), and better average decimal accuracy for inexact results on binary operations than posit and IEEE754. Going through existing benchmarks in the literature, and favorable/unfavorable examples for IEEE754/posit, we show that these new NRSs produce similar (less than one decimal accuracy difference) or even better results than IEEE754 and posit. Given the entire spectrum of results, there are arguments for MorrisBiasHEB to be used as a replacement for IEEE754 in general computations. MorrisUnaryHEB has a more populated ``golden zone'' (+13.6%) and a better dynamic range (149X) than posit, making it a candidate for machine learning computations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支持基于隐含指数位的Morris锥形浮点数新表示的数字表示系统库
posit的引入重新开启了关于IEEE754非特定域的实用性的争论。在这种情况下,我们提出了一个高级语言(Scala)库,旨在减少设计和测试新的数字表示系统(NRSs)的工作量。通过添加一个隐藏的指数位,从Morris锥形浮点派生出三个新的NRSs,测试了该库的效率。我们分别称这些nrs为MorrisHEB、MorrisBiasHEB和MorrisUnaryHEB。我们表明,它们提供了更好的动态范围,一元操作的更好的小数精度,更精确的加法结果(在MorrisUnaryHEB的情况下为37.61%),以及比正数和IEEE754更好的二进制操作的不精确结果的平均十进制精度。通过文献中的现有基准,以及IEEE754/posit的有利/不利示例,我们表明这些新的NRSs产生与IEEE754和posit相似(小于一个十进制的精度差异)甚至更好的结果。考虑到整个结果范围,在一般计算中使用MorrisBiasHEB作为IEEE754的替代品存在争议。morrisunaryheba拥有比posit更多的“黄金地带”(+13.6%)和更好的动态范围(149X),使其成为机器学习计算的候选对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1