Parallel local time stepping for rigid bodies represented by triangulated meshes

Peter Noble, Tobias Weinzierl
{"title":"Parallel local time stepping for rigid bodies represented by triangulated meshes","authors":"Peter Noble, Tobias Weinzierl","doi":"arxiv-2309.15417","DOIUrl":null,"url":null,"abstract":"Discrete Element Methods (DEM), i.e.~the simulation of many rigid particles,\nsuffer from very stiff differential equations plus multiscale challenges in\nspace and time. The particles move smoothly through space until they interact\nalmost instantaneously due to collisions. Dense particle packings hence require\ntiny time step sizes, while free particles can advance with large time steps.\nAdmissible time step sizes can span multiple orders of magnitudes. We propose\nan adaptive local time stepping algorithm which identifies clusters of\nparticles that can be updated independently, advances them optimistically and\nindependently in time, determines collision time stamps in space-time such that\nwe maximise the time step sizes used, and resolves the momentum exchange\nimplicitly. It is combined with various acceleration techniques which exploit\nmultiscale geometry representations and multiscale behaviour in time. The\ncollision time stamp detection in space-time in combination with the implicit\nsolve of the actual collision equations avoids that particles get locked into\ntiny time step sizes, the clustering yields a high concurrency level, and the\nacceleration techniques plus local time stepping avoid unnecessary\ncomputations. This brings a scaling, adaptive time stepping for DEM for\nreal-world challenges into reach.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"15 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.15417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discrete Element Methods (DEM), i.e.~the simulation of many rigid particles, suffer from very stiff differential equations plus multiscale challenges in space and time. The particles move smoothly through space until they interact almost instantaneously due to collisions. Dense particle packings hence require tiny time step sizes, while free particles can advance with large time steps. Admissible time step sizes can span multiple orders of magnitudes. We propose an adaptive local time stepping algorithm which identifies clusters of particles that can be updated independently, advances them optimistically and independently in time, determines collision time stamps in space-time such that we maximise the time step sizes used, and resolves the momentum exchange implicitly. It is combined with various acceleration techniques which exploit multiscale geometry representations and multiscale behaviour in time. The collision time stamp detection in space-time in combination with the implicit solve of the actual collision equations avoids that particles get locked into tiny time step sizes, the clustering yields a high concurrency level, and the acceleration techniques plus local time stepping avoid unnecessary computations. This brings a scaling, adaptive time stepping for DEM for real-world challenges into reach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用三角网格表示刚体的平行局部时间步进
离散元方法(DEM),即对许多刚性粒子的模拟,受到非常僵硬的微分方程和空间和时间上的多尺度挑战的困扰。粒子在空间中平稳地移动,直到它们由于碰撞而瞬间发生相互作用。因此,密集的粒子填料需要很小的时间步长,而自由粒子可以以大的时间步长前进。允许的时间步长可以跨越多个数量级。我们提出了一种自适应局部时间步进算法,该算法识别可以独立更新的粒子簇,在时间上乐观独立地推进它们,在时空上确定碰撞时间戳,从而使我们使用的时间步长最大化,并隐式地解决动量交换。它结合了各种加速技术,这些技术利用了多尺度几何表示和多尺度行为。时空中的碰撞时间戳检测与实际碰撞方程的隐式求解相结合,避免了粒子被锁定在微小的时间步长中,聚类产生高并发水平,加速技术加上本地时间步长避免了不必要的计算。这为现实世界挑战的DEM带来了可缩放、自适应的时间步进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1