NoMoPy: Noise Modeling in Python

Dylan Albrecht, N. Tobias Jacobson
{"title":"NoMoPy: Noise Modeling in Python","authors":"Dylan Albrecht, N. Tobias Jacobson","doi":"arxiv-2311.00084","DOIUrl":null,"url":null,"abstract":"NoMoPy is a code for fitting, analyzing, and generating noise modeled as a\nhidden Markov model (HMM) or, more generally, factorial hidden Markov model\n(FHMM). This code, written in Python, implements approximate and exact\nexpectation maximization (EM) algorithms for performing the parameter\nestimation process, model selection procedures via cross-validation, and\nparameter confidence region estimation. Here, we describe in detail the\nfunctionality implemented in NoMoPy and provide examples of its use and\nperformance on example problems.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"16 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2311.00084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

NoMoPy is a code for fitting, analyzing, and generating noise modeled as a hidden Markov model (HMM) or, more generally, factorial hidden Markov model (FHMM). This code, written in Python, implements approximate and exact expectation maximization (EM) algorithms for performing the parameter estimation process, model selection procedures via cross-validation, and parameter confidence region estimation. Here, we describe in detail the functionality implemented in NoMoPy and provide examples of its use and performance on example problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NoMoPy: Python中的噪声建模
NoMoPy是一个用于拟合、分析和生成噪声的代码,该噪声建模为隐马尔可夫模型(HMM),或者更一般地说,是阶乘隐马尔可夫模型(FHMM)。这段代码用Python编写,实现了近似和精确期望最大化(EM)算法,用于执行参数估计过程、通过交叉验证的模型选择过程和参数置信区域估计。在这里,我们详细描述了在NoMoPy中实现的功能,并提供了它在示例问题上的使用和性能示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1