A directional regularization method for the limited-angle Helsinki Tomography Challenge using the Core Imaging Library (CIL)

Jakob Sauer Jørgensen, Evangelos Papoutsellis, Laura Murgatroyd, Gemma Fardell, Edoardo Pasca
{"title":"A directional regularization method for the limited-angle Helsinki Tomography Challenge using the Core Imaging Library (CIL)","authors":"Jakob Sauer Jørgensen, Evangelos Papoutsellis, Laura Murgatroyd, Gemma Fardell, Edoardo Pasca","doi":"arxiv-2310.01671","DOIUrl":null,"url":null,"abstract":"This article presents the algorithms developed by the Core Imaging Library\n(CIL) developer team for the Helsinki Tomography Challenge 2022. The challenge\nfocused on reconstructing 2D phantom shapes from limited-angle computed\ntomography (CT) data. The CIL team designed and implemented five reconstruction\nmethods using CIL (https://ccpi.ac.uk/cil/), an open-source Python package for\ntomographic imaging. The CIL team adopted a model-based reconstruction\nstrategy, unique to this challenge with all other teams relying on\ndeep-learning techniques. The CIL algorithms showcased exceptional performance,\nwith one algorithm securing the third place in the competition. The\nbest-performing algorithm employed careful CT data pre-processing and an\noptimization problem with single-sided directional total variation\nregularization combined with isotropic total variation and tailored lower and\nupper bounds. The reconstructions and segmentations achieved high quality for\ndata with angular ranges down to 50 degrees, and in some cases acceptable\nperformance even at 40 and 30 degrees. This study highlights the effectiveness\nof model-based approaches in limited-angle tomography and emphasizes the\nimportance of proper algorithmic design leveraging on available prior knowledge\nto overcome data limitations. Finally, this study highlights the flexibility of\nCIL for prototyping and comparison of different optimization methods.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"9 4-5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.01671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the algorithms developed by the Core Imaging Library (CIL) developer team for the Helsinki Tomography Challenge 2022. The challenge focused on reconstructing 2D phantom shapes from limited-angle computed tomography (CT) data. The CIL team designed and implemented five reconstruction methods using CIL (https://ccpi.ac.uk/cil/), an open-source Python package for tomographic imaging. The CIL team adopted a model-based reconstruction strategy, unique to this challenge with all other teams relying on deep-learning techniques. The CIL algorithms showcased exceptional performance, with one algorithm securing the third place in the competition. The best-performing algorithm employed careful CT data pre-processing and an optimization problem with single-sided directional total variation regularization combined with isotropic total variation and tailored lower and upper bounds. The reconstructions and segmentations achieved high quality for data with angular ranges down to 50 degrees, and in some cases acceptable performance even at 40 and 30 degrees. This study highlights the effectiveness of model-based approaches in limited-angle tomography and emphasizes the importance of proper algorithmic design leveraging on available prior knowledge to overcome data limitations. Finally, this study highlights the flexibility of CIL for prototyping and comparison of different optimization methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核心成像库(CIL)的有限角度赫尔辛基层析成像挑战的方向正则化方法
本文介绍了核心成像库(CIL)开发团队为2022年赫尔辛基断层扫描挑战赛开发的算法。挑战集中在从有限角度计算机断层扫描(CT)数据重建2D幻像形状。CIL团队使用CIL (https://ccpi.ac.uk/cil/)设计并实现了五种重建方法,CIL是一个用于断层成像的开源Python包。CIL团队采用了基于模型的重建策略,与其他所有依赖深度学习技术的团队相比,这是独一无二的。CIL算法表现出色,其中一种算法在比赛中获得了第三名。性能最好的算法采用仔细的CT数据预处理和单侧定向总变分的优化问题、各向同性总变分的正则化和定制的上下边界。对于角度范围低至50度的数据,重建和分割实现了高质量,在某些情况下,甚至在40度和30度的情况下也具有可接受的性能。本研究强调了基于模型的方法在有限角度断层扫描中的有效性,并强调了利用现有先验知识来克服数据限制的适当算法设计的重要性。最后,本研究强调了cil在原型设计和不同优化方法比较方面的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A prony method variant which surpasses the Adaptive LMS filter in the output signal's representation of input TorchDA: A Python package for performing data assimilation with deep learning forward and transformation functions HOBOTAN: Efficient Higher Order Binary Optimization Solver with Tensor Networks and PyTorch MPAT: Modular Petri Net Assembly Toolkit Enabling MPI communication within Numba/LLVM JIT-compiled Python code using numba-mpi v1.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1