Charge density model for the interaction of molecules with vortex beams

Mikhail Maslov, Georgios M. Koutentakis, Mateja Hrast, Oliver H. Heckl, Mikhail Lemeshko
{"title":"Charge density model for the interaction of molecules with vortex beams","authors":"Mikhail Maslov, Georgios M. Koutentakis, Mateja Hrast, Oliver H. Heckl, Mikhail Lemeshko","doi":"arxiv-2310.00095","DOIUrl":null,"url":null,"abstract":"The interaction of molecules with the orbital angular momentum of light has\nlong been argued to benefit structural studies and quantum control of molecular\nensembles. We derive a general description of the light-matter interaction in\nterms of the coupling between spherical gradients of the electric field and an\neffective molecular charge density that exactly reproduces molecular multipole\nmoments. Our model can accommodate for an arbitrary complexity of the molecular\nstructure and is applicable to any electric field, with the exception of\ntightly focused beams. Within this framework, we derive the general mechanism\nof angular momentum exchange between the spin and orbital angular momenta of\nlight, molecular rotation and its center-of-mass motion. We demonstrate that\nvortex beams strongly enhance certain ro-vibrational transitions that are\nconsidered forbidden in the case of a non-helical light. Finally, we discuss\nthe experimental requirements for the observation of novel transitions in\nstate-of-the-art spatially-resolved spectroscopy measurements.","PeriodicalId":501259,"journal":{"name":"arXiv - PHYS - Atomic and Molecular Clusters","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic and Molecular Clusters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2310.00095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The interaction of molecules with the orbital angular momentum of light has long been argued to benefit structural studies and quantum control of molecular ensembles. We derive a general description of the light-matter interaction in terms of the coupling between spherical gradients of the electric field and an effective molecular charge density that exactly reproduces molecular multipole moments. Our model can accommodate for an arbitrary complexity of the molecular structure and is applicable to any electric field, with the exception of tightly focused beams. Within this framework, we derive the general mechanism of angular momentum exchange between the spin and orbital angular momenta of light, molecular rotation and its center-of-mass motion. We demonstrate that vortex beams strongly enhance certain ro-vibrational transitions that are considered forbidden in the case of a non-helical light. Finally, we discuss the experimental requirements for the observation of novel transitions in state-of-the-art spatially-resolved spectroscopy measurements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子与涡旋光束相互作用的电荷密度模型
分子与光的轨道角动量的相互作用长期以来一直被认为有利于分子组装体的结构研究和量子控制。我们推导了光-物质相互作用项中电场的球形梯度与有效分子电荷密度之间耦合的一般描述,该描述精确地再现了分子多极元。我们的模型可以适应任意复杂的分子结构,适用于任何电场,除了紧密聚焦的光束。在此框架下,我们推导了分子自旋角动量和轨道角动量交换的一般机制,以及分子旋转和质心运动的角动量交换。我们证明了涡旋光束强烈地增强了在非螺旋光的情况下被认为是禁止的某些反振动跃迁。最后,我们讨论了在最先进的空间分辨光谱测量中观察新跃迁的实验要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Types of Size-Dependent Melting in Fe Nanoclusters: a Molecular Dynamics Study How to manipulate nanoparticle morphology with vacancies Collective states of α-sexithiophene chains inside boron nitride nanotubes Accelerated structure-stability energy-free calculator Structures and infrared spectroscopy of Au$_{10}$ cluster at different temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1