Relativistic Douglas-Kroll-Hess Calculations of Hyperfine Interactions within First Principles Multireference Methods

Aleksander L. Wysocki, Kyungwha Park
{"title":"Relativistic Douglas-Kroll-Hess Calculations of Hyperfine Interactions within First Principles Multireference Methods","authors":"Aleksander L. Wysocki, Kyungwha Park","doi":"arxiv-2309.09349","DOIUrl":null,"url":null,"abstract":"Relativistic magnetic hyperfine interaction Hamiltonian based on the\nDouglas-Kroll-Hess (DKH) theory up to the second order is implemented within\nthe ab initio multireference methods including spin-orbit coupling in the\nMolcas/OpenMolcas package. This implementation is applied to calculate\nrelativistic hyperfine coupling (HFC) parameters for atomic systems and\ndiatomic radicals with valence s or d orbitals by systematically varying active\nspace size in the restricted active space self-consistent field (RASSCF)\nformalism with restricted active space state interaction (RASSI) for spin-orbit\ncoupling. The DKH relativistic treatment of the hyperfine interaction reduces\nthe Fermi contact contribution to the HFC due to the presence of kinetic\nfactors that regularize the singularity of the Dirac delta function in the\nnonrelativitic Fermi contact operator. This effect is more prominent for\nheavier nuclei. As the active space size increases, the relativistic correction\nof the Fermi contact contribution converges well to the experimental data for\nlight and moderately heavy nuclei. The relativistic correction, however, does\nnot significantly affect the spin-dipole contribution to the hyperfine\ninteraction. In addition to the atomic and molecular systems, the\nimplementation is applied to calculate the relativistic HFC parameters for\nlarge trivalent and divalent Tb-based single-molecule magnets (SMMs) such as\nTb(III)Pc$_2$ and Tb(II)(Cp$^\\text{iPr5}$)$_2$ without ligand truncation using\nwell-converged basis sets. In particular, for the divalent SMM which has an\nunpaired valence 6s/5d hybrid orbital, the relativistic treatment of HFC is\ncrucial for a proper description of the Fermi contact contribution. Even with\nthe relativistic hyperfine Hamiltonian, the divalent SMM is shown to exhibit\nstrong tunability of HFC via an external electric field (i.e., strong hyperfine\nStark effect).","PeriodicalId":501259,"journal":{"name":"arXiv - PHYS - Atomic and Molecular Clusters","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic and Molecular Clusters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2309.09349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Relativistic magnetic hyperfine interaction Hamiltonian based on the Douglas-Kroll-Hess (DKH) theory up to the second order is implemented within the ab initio multireference methods including spin-orbit coupling in the Molcas/OpenMolcas package. This implementation is applied to calculate relativistic hyperfine coupling (HFC) parameters for atomic systems and diatomic radicals with valence s or d orbitals by systematically varying active space size in the restricted active space self-consistent field (RASSCF) formalism with restricted active space state interaction (RASSI) for spin-orbit coupling. The DKH relativistic treatment of the hyperfine interaction reduces the Fermi contact contribution to the HFC due to the presence of kinetic factors that regularize the singularity of the Dirac delta function in the nonrelativitic Fermi contact operator. This effect is more prominent for heavier nuclei. As the active space size increases, the relativistic correction of the Fermi contact contribution converges well to the experimental data for light and moderately heavy nuclei. The relativistic correction, however, does not significantly affect the spin-dipole contribution to the hyperfine interaction. In addition to the atomic and molecular systems, the implementation is applied to calculate the relativistic HFC parameters for large trivalent and divalent Tb-based single-molecule magnets (SMMs) such as Tb(III)Pc$_2$ and Tb(II)(Cp$^\text{iPr5}$)$_2$ without ligand truncation using well-converged basis sets. In particular, for the divalent SMM which has an unpaired valence 6s/5d hybrid orbital, the relativistic treatment of HFC is crucial for a proper description of the Fermi contact contribution. Even with the relativistic hyperfine Hamiltonian, the divalent SMM is shown to exhibit strong tunability of HFC via an external electric field (i.e., strong hyperfine Stark effect).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
第一原理多参考方法中超精细相互作用的相对论Douglas-Kroll-Hess计算
基于douglas - kroll - hess (DKH)理论的相对论磁超精细相互作用哈密顿量在theMolcas/OpenMolcas封装中采用自旋-轨道耦合等从头算多参考方法实现。该实现应用于计算原子系统和价态为s或d轨道的双原子自由基的相对论性超精细耦合(HFC)参数,方法是在自旋-轨道耦合的受限活动空间自洽场(RASSCF)形式中系统地改变活动空间大小。由于存在使非相对论性费米接触算子中狄拉克函数奇点正则化的动力学因素,超精细相互作用的DKH相对论性处理减少了费米接触对HFC的贡献。这种效应在较重的原子核中更为明显。随着活动空间尺寸的增大,费米接触贡献的相对论性修正很好地收敛于轻核和中重核的实验数据。然而,相对论修正并不显著影响自旋偶极子对超精细相互作用的贡献。除了原子和分子系统外,该实现还应用于计算大的三价和二价Tb基单分子磁体(SMMs)如asTb(III)Pc$_2$和Tb(II)(Cp$^\text{iPr5}$)$_2$的相对论HFC参数,这些磁体没有配体截断。特别是,对于具有未配对价态6s/5d杂化轨道的二价SMM, HFC的相对论处理对于正确描述费米接触贡献至关重要。即使在相对论性的超精细哈密顿量下,二价SMM通过外电场表现出很强的HFC可调性(即强超精细estark效应)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Types of Size-Dependent Melting in Fe Nanoclusters: a Molecular Dynamics Study How to manipulate nanoparticle morphology with vacancies Collective states of α-sexithiophene chains inside boron nitride nanotubes Accelerated structure-stability energy-free calculator Structures and infrared spectroscopy of Au$_{10}$ cluster at different temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1