Efficient Simulation of Sparse Graphs of Point Processes

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS ACM Transactions on Modeling and Computer Simulation Pub Date : 2023-02-28 DOI:https://dl.acm.org/doi/10.1145/3565809
Cyrille Mascart, David Hill, Alexandre Muzy, Patricia Reynaud-Bouret
{"title":"Efficient Simulation of Sparse Graphs of Point Processes","authors":"Cyrille Mascart, David Hill, Alexandre Muzy, Patricia Reynaud-Bouret","doi":"https://dl.acm.org/doi/10.1145/3565809","DOIUrl":null,"url":null,"abstract":"<p>We derive new discrete event simulation algorithms for marked time point processes. The main idea is to couple a special structure, namely the associated local independence graph, as defined by Didelez, with the activity tracking algorithm of Muzy for achieving high-performance asynchronous simulations. With respect to classical algorithms, this allows us to drastically reduce the computational complexity, especially when the graph is sparse.</p>","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3565809","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We derive new discrete event simulation algorithms for marked time point processes. The main idea is to couple a special structure, namely the associated local independence graph, as defined by Didelez, with the activity tracking algorithm of Muzy for achieving high-performance asynchronous simulations. With respect to classical algorithms, this allows us to drastically reduce the computational complexity, especially when the graph is sparse.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
点过程稀疏图的高效模拟
我们为标记时间点过程导出了新的离散事件模拟算法。其主要思想是将Didelez定义的特殊结构(即关联的局部独立图)与Muzy的活动跟踪算法相结合,以实现高性能的异步仿真。与经典算法相比,这使我们能够大大降低计算复杂度,特别是当图是稀疏的时候。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation 工程技术-计算机:跨学科应用
CiteScore
2.50
自引率
22.20%
发文量
29
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods. The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.
期刊最新文献
Reproducibility Report for the Paper "Performance Evaluation of Spintronic-Based Spiking Neural Networks Using Parallel Discrete-Event Simulation" Data Farming the Parameters of Simulation-Optimization Solvers Modeling of biogas production from hydrothermal carbonization products in a continuous anaerobic digester. Optimized Real-Time Stochastic Model of Power Electronic Converters based on FPGA Virtual Time III, Part 3: Throttling and Message Cancellation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1