M. A. Kudryashov, L. A. Mochalov, I. O. Prokhorov, M. A. Vshivtsev, Yu. P. Kudryashova, V. M. Malyshev, E. A. Slapovskaya
{"title":"Plasma-Enhanced Chemical Vapor Deposition of Thin GaS Films on Various Types of Substrates","authors":"M. A. Kudryashov, L. A. Mochalov, I. O. Prokhorov, M. A. Vshivtsev, Yu. P. Kudryashova, V. M. Malyshev, E. A. Slapovskaya","doi":"10.1134/s0018143923060097","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Gallium monosulfide (GaS), a representative of Group III monochalcogenide layered materials, is a wide-bandgap semiconductor. It is considered an ideal material for light detectors in the blue and near ultraviolet ranges of the spectrum. In this work, for the first time, the method of plasma-enhanced chemical vapor deposition (PECVD) was applied to obtain thin GaS films on various substrates, where high-purity gallium and sulfur served as starting materials. To initiate the interaction between the reactants, a nonequilibrium RF discharge (40.68 MHz) plasma at a pressure of 0.1 torr was used. The influence of the substrate nature on the stoichiometry, structure, and surface morphology of GaS films has been studied. The plasma-chemical process was monitored using optical emission spectroscopy.</p>","PeriodicalId":12893,"journal":{"name":"High Energy Chemistry","volume":"21 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1134/s0018143923060097","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gallium monosulfide (GaS), a representative of Group III monochalcogenide layered materials, is a wide-bandgap semiconductor. It is considered an ideal material for light detectors in the blue and near ultraviolet ranges of the spectrum. In this work, for the first time, the method of plasma-enhanced chemical vapor deposition (PECVD) was applied to obtain thin GaS films on various substrates, where high-purity gallium and sulfur served as starting materials. To initiate the interaction between the reactants, a nonequilibrium RF discharge (40.68 MHz) plasma at a pressure of 0.1 torr was used. The influence of the substrate nature on the stoichiometry, structure, and surface morphology of GaS films has been studied. The plasma-chemical process was monitored using optical emission spectroscopy.
期刊介绍:
High Energy Chemistry publishes original articles, reviews, and short communications on molecular and supramolecular photochemistry, photobiology, radiation chemistry, plasma chemistry, chemistry of nanosized systems, chemistry of new atoms, processes and materials for optical information systems and other areas of high energy chemistry. It publishes theoretical and experimental studies in all areas of high energy chemistry, such as the interaction of high-energy particles with matter, the nature and reactivity of short-lived species induced by the action of particle and electromagnetic radiation or hot atoms on substances in their gaseous and condensed states, and chemical processes initiated in organic and inorganic systems by high-energy radiation.