{"title":"Implementation of high precision/low latency FP divider using Urdhva–Tiryakbhyam multiplier for SoC applications","authors":"C. R. S. Hanuman, J. Kamala, A. R. Aruna","doi":"10.1007/s10617-019-09225-2","DOIUrl":null,"url":null,"abstract":"The increasing demand of Industrial and Scientific data intensive applications are higher precision arithmetic with reduced computation time. In this paper, we designed a high-precision, fully pipelined 32-bit floating-point (FP) divider using Newton–Raphson (NR) algorithm realized with Urdhva–Tiryakbhyam (UT) multiplier for System on Chip applications. The divider design is based on Newton–Raphson (multiplicative) method and it supports all IEEE rounding modes with a latency of 15 cycles. The iterative NR computations are performed by using FP multiplier and FP adder. The key module of FP multiplier for calculating mantissa part is UT multiplier. It’s an ancient Vedic multiplication technique used from few centuries back for doing fast multiplications. We implemented two UT multipliers: one using carry look-ahead adders and another one using carry save adders. The results show that, the proposed architectures have 12% better precision with 24% high throughput than existing algorithms, at the cost of high on-chip power. The inputs to the divider are represented in IEEE-754 standard. The design uses Xilinx Vivado software and it is implemented on Virtex7 FPGA.","PeriodicalId":50594,"journal":{"name":"Design Automation for Embedded Systems","volume":"62 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Automation for Embedded Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10617-019-09225-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing demand of Industrial and Scientific data intensive applications are higher precision arithmetic with reduced computation time. In this paper, we designed a high-precision, fully pipelined 32-bit floating-point (FP) divider using Newton–Raphson (NR) algorithm realized with Urdhva–Tiryakbhyam (UT) multiplier for System on Chip applications. The divider design is based on Newton–Raphson (multiplicative) method and it supports all IEEE rounding modes with a latency of 15 cycles. The iterative NR computations are performed by using FP multiplier and FP adder. The key module of FP multiplier for calculating mantissa part is UT multiplier. It’s an ancient Vedic multiplication technique used from few centuries back for doing fast multiplications. We implemented two UT multipliers: one using carry look-ahead adders and another one using carry save adders. The results show that, the proposed architectures have 12% better precision with 24% high throughput than existing algorithms, at the cost of high on-chip power. The inputs to the divider are represented in IEEE-754 standard. The design uses Xilinx Vivado software and it is implemented on Virtex7 FPGA.
期刊介绍:
Embedded (electronic) systems have become the electronic engines of modern consumer and industrial devices, from automobiles to satellites, from washing machines to high-definition TVs, and from cellular phones to complete base stations. These embedded systems encompass a variety of hardware and software components which implement a wide range of functions including digital, analog and RF parts.
Although embedded systems have been designed for decades, the systematic design of such systems with well defined methodologies, automation tools and technologies has gained attention primarily in the last decade. Advances in silicon technology and increasingly demanding applications have significantly expanded the scope and complexity of embedded systems. These systems are only now becoming possible due to advances in methodologies, tools, architectures and design techniques.
Design Automation for Embedded Systems is a multidisciplinary journal which addresses the systematic design of embedded systems, focusing primarily on tools, methodologies and architectures for embedded systems, including HW/SW co-design, simulation and modeling approaches, synthesis techniques, architectures and design exploration, among others.
Design Automation for Embedded Systems offers a forum for scientist and engineers to report on their latest works on algorithms, tools, architectures, case studies and real design examples related to embedded systems hardware and software.
Design Automation for Embedded Systems is an innovative journal which distinguishes itself by welcoming high-quality papers on the methodology, tools, architectures and design of electronic embedded systems, leading to a true multidisciplinary system design journal.