An energy-efficient time-triggered scheduling algorithm for mixed-criticality systems

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Design Automation for Embedded Systems Pub Date : 2019-12-05 DOI:10.1007/s10617-019-09232-3
Lalatendu Behera, Purandar Bhaduri
{"title":"An energy-efficient time-triggered scheduling algorithm for mixed-criticality systems","authors":"Lalatendu Behera, Purandar Bhaduri","doi":"10.1007/s10617-019-09232-3","DOIUrl":null,"url":null,"abstract":"Real-time safety-critical systems are getting more complicated due to the introduction of mixed-criticality systems. The increasing use of mixed-criticality systems has motivated the real-time systems research community to investigate various non-functional aspects of these systems. Energy consumption minimization is one such aspect which is just beginning to be explored. In this paper, we propose a time-triggered dynamic voltage and frequency scaling (DVFS) algorithm for uniprocessor mixed-criticality systems. We show that our algorithm outperforms the predominant existing algorithm which uses DVFS for mixed-criticality systems with respect to minimization of energy consumption. In addition, ours is the first energy-efficient time-triggered algorithm for mixed-criticality systems. We prove an optimality result for the proposed algorithm with respect to energy consumption. Then we extend our algorithm for tasks with dependency constraints.","PeriodicalId":50594,"journal":{"name":"Design Automation for Embedded Systems","volume":"141 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Automation for Embedded Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10617-019-09232-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

Real-time safety-critical systems are getting more complicated due to the introduction of mixed-criticality systems. The increasing use of mixed-criticality systems has motivated the real-time systems research community to investigate various non-functional aspects of these systems. Energy consumption minimization is one such aspect which is just beginning to be explored. In this paper, we propose a time-triggered dynamic voltage and frequency scaling (DVFS) algorithm for uniprocessor mixed-criticality systems. We show that our algorithm outperforms the predominant existing algorithm which uses DVFS for mixed-criticality systems with respect to minimization of energy consumption. In addition, ours is the first energy-efficient time-triggered algorithm for mixed-criticality systems. We prove an optimality result for the proposed algorithm with respect to energy consumption. Then we extend our algorithm for tasks with dependency constraints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合临界系统的高效时间触发调度算法
由于混合临界系统的引入,实时安全关键系统变得越来越复杂。混合临界系统的使用越来越多,这促使实时系统研究团体研究这些系统的各种非功能方面。能源消耗最小化就是其中一个刚刚开始探索的方面。本文提出了一种单处理器混合临界系统的时间触发动态电压频率缩放(DVFS)算法。我们表明,我们的算法优于现有的主要算法,该算法在能量消耗最小化方面使用混合临界系统的DVFS。此外,我们的算法是第一个用于混合临界系统的节能时间触发算法。我们证明了该算法在能量消耗方面的最优性。然后,我们将算法扩展到具有依赖约束的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Design Automation for Embedded Systems
Design Automation for Embedded Systems 工程技术-计算机:软件工程
CiteScore
2.60
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Embedded (electronic) systems have become the electronic engines of modern consumer and industrial devices, from automobiles to satellites, from washing machines to high-definition TVs, and from cellular phones to complete base stations. These embedded systems encompass a variety of hardware and software components which implement a wide range of functions including digital, analog and RF parts. Although embedded systems have been designed for decades, the systematic design of such systems with well defined methodologies, automation tools and technologies has gained attention primarily in the last decade. Advances in silicon technology and increasingly demanding applications have significantly expanded the scope and complexity of embedded systems. These systems are only now becoming possible due to advances in methodologies, tools, architectures and design techniques. Design Automation for Embedded Systems is a multidisciplinary journal which addresses the systematic design of embedded systems, focusing primarily on tools, methodologies and architectures for embedded systems, including HW/SW co-design, simulation and modeling approaches, synthesis techniques, architectures and design exploration, among others. Design Automation for Embedded Systems offers a forum for scientist and engineers to report on their latest works on algorithms, tools, architectures, case studies and real design examples related to embedded systems hardware and software. Design Automation for Embedded Systems is an innovative journal which distinguishes itself by welcoming high-quality papers on the methodology, tools, architectures and design of electronic embedded systems, leading to a true multidisciplinary system design journal.
期刊最新文献
Model predictive-based DNN control model for automated steering deployed on FPGA using an automatic IP generator tool Design and analysis of an adaptive radiation resilient RRAM subsystem for processing systems in satellites Improving edge AI for industrial IoT applications with distributed learning using consensus Profiling with trust: system monitoring from trusted execution environments Novel adaptive quantization methodology for 8-bit floating-point DNN training
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1