{"title":"New paradigm of FPGA-based computational intelligence from surveying the implementation of DNN accelerators","authors":"Yang You, Yinghui Chang, Weikang Wu, Bingrui Guo, Hongyin Luo, Xiaojie Liu, Bijing Liu, Kairong Zhao, Shan He, Lin Li, Donghui Guo","doi":"10.1007/s10617-021-09256-8","DOIUrl":null,"url":null,"abstract":"<p>With the rapid development of Artificial Intelligence, Internet of Things, 5G, and other technologies, a number of emerging intelligent applications represented by image recognition, voice recognition, autonomous driving, and intelligent manufacturing have appeared. These applications require efficient and intelligent processing systems for massive data calculations, so it is urgent to apply better DNN in a faster way. Although, compared with GPU, FPGA has a higher energy efficiency ratio, and shorter development cycle and better flexibility than ASIC. However, FPGA is not a perfect hardware platform either for computational intelligence. This paper provides a survey of the latest acceleration work related to the familiar DNNs and proposes three new directions to break the bottleneck of the DNN implementation. So as to improve calculating speed and energy efficiency of edge devices, intelligent embedded approaches including model compression and optimized data movement of the entire system are most commonly used. With the gradual slowdown of Moore’s Law, the traditional Von Neumann Architecture generates a “Memory Wall” problem, resulting in more power-consuming. In-memory computation will be the right medicine in the post-Moore law era. More complete software/hardware co-design environment will direct researchers’ attention to explore deep learning algorithms and run the algorithm on the hardware level in a faster way. These new directions start a relatively new paradigm in computational intelligence, which have attracted substantial attention from the research community and demonstrated greater potential over traditional techniques.</p>","PeriodicalId":50594,"journal":{"name":"Design Automation for Embedded Systems","volume":"15 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Automation for Embedded Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10617-021-09256-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of Artificial Intelligence, Internet of Things, 5G, and other technologies, a number of emerging intelligent applications represented by image recognition, voice recognition, autonomous driving, and intelligent manufacturing have appeared. These applications require efficient and intelligent processing systems for massive data calculations, so it is urgent to apply better DNN in a faster way. Although, compared with GPU, FPGA has a higher energy efficiency ratio, and shorter development cycle and better flexibility than ASIC. However, FPGA is not a perfect hardware platform either for computational intelligence. This paper provides a survey of the latest acceleration work related to the familiar DNNs and proposes three new directions to break the bottleneck of the DNN implementation. So as to improve calculating speed and energy efficiency of edge devices, intelligent embedded approaches including model compression and optimized data movement of the entire system are most commonly used. With the gradual slowdown of Moore’s Law, the traditional Von Neumann Architecture generates a “Memory Wall” problem, resulting in more power-consuming. In-memory computation will be the right medicine in the post-Moore law era. More complete software/hardware co-design environment will direct researchers’ attention to explore deep learning algorithms and run the algorithm on the hardware level in a faster way. These new directions start a relatively new paradigm in computational intelligence, which have attracted substantial attention from the research community and demonstrated greater potential over traditional techniques.
期刊介绍:
Embedded (electronic) systems have become the electronic engines of modern consumer and industrial devices, from automobiles to satellites, from washing machines to high-definition TVs, and from cellular phones to complete base stations. These embedded systems encompass a variety of hardware and software components which implement a wide range of functions including digital, analog and RF parts.
Although embedded systems have been designed for decades, the systematic design of such systems with well defined methodologies, automation tools and technologies has gained attention primarily in the last decade. Advances in silicon technology and increasingly demanding applications have significantly expanded the scope and complexity of embedded systems. These systems are only now becoming possible due to advances in methodologies, tools, architectures and design techniques.
Design Automation for Embedded Systems is a multidisciplinary journal which addresses the systematic design of embedded systems, focusing primarily on tools, methodologies and architectures for embedded systems, including HW/SW co-design, simulation and modeling approaches, synthesis techniques, architectures and design exploration, among others.
Design Automation for Embedded Systems offers a forum for scientist and engineers to report on their latest works on algorithms, tools, architectures, case studies and real design examples related to embedded systems hardware and software.
Design Automation for Embedded Systems is an innovative journal which distinguishes itself by welcoming high-quality papers on the methodology, tools, architectures and design of electronic embedded systems, leading to a true multidisciplinary system design journal.