{"title":"CO2 geological sequestration potential of the low-rank coals in the southern margin of the Junggar Basin","authors":"Qun Zhao, Ze Deng, Meng Zhao, Dexun Liu","doi":"10.1007/s11707-022-1043-9","DOIUrl":null,"url":null,"abstract":"<p>Carbon capture, utilization, and storage (CCUS) is considered one of the most effective measures to achieve net-zero carbon emissions by 2050, and low-rank coal reservoirs are commonly recognized as potential CO<sub>2</sub> storage sites for carbon sequestration. To evaluate the geological CO<sub>2</sub> sequestration potential of the low-rank coal reservoirs in the southern margin of the Junggar Basin, multiple experiments were performed on coal samples from that area, including high-pressure mercury porosimetry, low-temperature N<sub>2</sub> adsorption, overburden porosity and permeability measurements, and high-pressure CH<sub>4</sub> and CO<sub>2</sub> isothermal adsorption measurements. Combined with the geological properties of the potential reservoir, including coal seam development and hydrodynamic characteristics, the areas between Santun River and Sigong River in the Junggar Basin were found to be suitable for CO<sub>2</sub> sequestration. Consequently, the coal-bearing strata from Santun River to Sigong River can be defined as “potentially favorable areas for CO<sub>2</sub> eequetfraiion” To better guide the future field test of CO<sub>2</sub> storage in these areas, three CO<sub>2</sub> sequestration modes were defined: 1) the broad syncline and faulted anticline mode; 2) the monoclinic mode; 3) the syncline and strike-slip fault mode.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11707-022-1043-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon capture, utilization, and storage (CCUS) is considered one of the most effective measures to achieve net-zero carbon emissions by 2050, and low-rank coal reservoirs are commonly recognized as potential CO2 storage sites for carbon sequestration. To evaluate the geological CO2 sequestration potential of the low-rank coal reservoirs in the southern margin of the Junggar Basin, multiple experiments were performed on coal samples from that area, including high-pressure mercury porosimetry, low-temperature N2 adsorption, overburden porosity and permeability measurements, and high-pressure CH4 and CO2 isothermal adsorption measurements. Combined with the geological properties of the potential reservoir, including coal seam development and hydrodynamic characteristics, the areas between Santun River and Sigong River in the Junggar Basin were found to be suitable for CO2 sequestration. Consequently, the coal-bearing strata from Santun River to Sigong River can be defined as “potentially favorable areas for CO2 eequetfraiion” To better guide the future field test of CO2 storage in these areas, three CO2 sequestration modes were defined: 1) the broad syncline and faulted anticline mode; 2) the monoclinic mode; 3) the syncline and strike-slip fault mode.
期刊介绍:
Frontiers of Earth Science publishes original, peer-reviewed, theoretical and experimental frontier research papers as well as significant review articles of more general interest to earth scientists. The journal features articles dealing with observations, patterns, processes, and modeling of both innerspheres (including deep crust, mantle, and core) and outerspheres (including atmosphere, hydrosphere, and biosphere) of the earth. Its aim is to promote communication and share knowledge among the international earth science communities