{"title":"Theoretical Analysis of Resonant Hyper-Raman Scattering of Light by 2 LO Phonons in a CdS Crystal","authors":"Ludmila E. Semenova","doi":"10.1007/s10946-023-10169-z","DOIUrl":null,"url":null,"abstract":"<div><p>We theoretically study resonant hyper-Raman scattering of light by 2 LO phonons in a CdS crystal with the wurtzite structure. The scattering process involving the two-photon dipole transitions to B and C excitons of the <i>s</i>-type is considered. The different sequences of intermediate states are taken into account. It is shown that the inclusion of the possible dipole transitions to the deeper valence band, at certain conditions, can have a noticeable effect on the frequency dependence of the scattering cross section.</p></div>","PeriodicalId":663,"journal":{"name":"Journal of Russian Laser Research","volume":"44 6","pages":"609 - 617"},"PeriodicalIF":0.7000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Russian Laser Research","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10946-023-10169-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
We theoretically study resonant hyper-Raman scattering of light by 2 LO phonons in a CdS crystal with the wurtzite structure. The scattering process involving the two-photon dipole transitions to B and C excitons of the s-type is considered. The different sequences of intermediate states are taken into account. It is shown that the inclusion of the possible dipole transitions to the deeper valence band, at certain conditions, can have a noticeable effect on the frequency dependence of the scattering cross section.
期刊介绍:
The journal publishes original, high-quality articles that follow new developments in all areas of laser research, including:
laser physics;
laser interaction with matter;
properties of laser beams;
laser thermonuclear fusion;
laser chemistry;
quantum and nonlinear optics;
optoelectronics;
solid state, gas, liquid, chemical, and semiconductor lasers.