Latent class proportional hazards regression with heterogeneous survival data

Pub Date : 2023-11-27 DOI:10.4310/23-sii785
Teng Fei, John J. Hanfelt, Limin Peng
{"title":"Latent class proportional hazards regression with heterogeneous survival data","authors":"Teng Fei, John J. Hanfelt, Limin Peng","doi":"10.4310/23-sii785","DOIUrl":null,"url":null,"abstract":"Heterogeneous survival data are commonly present in chronic disease studies. Delineating meaningful disease subtypes directly linked to a survival outcome can generate useful scientific implications. In this work, we develop a latent class proportional hazards (PH) regression framework to address such an interest. We propose mixture proportional hazards modeling, which flexibly accommodates class-specific covariate effects while allowing for the baseline hazard function to vary across latent classes. Adapting the strategy of nonparametric maximum likelihood estimation, we derive an Expectation-Maximization (E‑M) algorithm to estimate the proposed model. We establish the theoretical properties of the resulting estimators. Extensive simulation studies are conducted, demonstrating satisfactory finite-sample performance of the proposed method as well as the predictive benefit from accounting for the heterogeneity across latent classes. We further illustrate the practical utility of the proposed method through an application to a mild cognitive impairment (MCI) cohort in the Uniform Data Set.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous survival data are commonly present in chronic disease studies. Delineating meaningful disease subtypes directly linked to a survival outcome can generate useful scientific implications. In this work, we develop a latent class proportional hazards (PH) regression framework to address such an interest. We propose mixture proportional hazards modeling, which flexibly accommodates class-specific covariate effects while allowing for the baseline hazard function to vary across latent classes. Adapting the strategy of nonparametric maximum likelihood estimation, we derive an Expectation-Maximization (E‑M) algorithm to estimate the proposed model. We establish the theoretical properties of the resulting estimators. Extensive simulation studies are conducted, demonstrating satisfactory finite-sample performance of the proposed method as well as the predictive benefit from accounting for the heterogeneity across latent classes. We further illustrate the practical utility of the proposed method through an application to a mild cognitive impairment (MCI) cohort in the Uniform Data Set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
潜在类别比例风险回归与异质生存数据
异质性生存数据通常存在于慢性病研究中。描述与生存结果直接相关的有意义的疾病亚型可以产生有用的科学意义。在这项工作中,我们开发了一个潜在类别比例风险(PH)回归框架来解决这样的问题。我们提出了混合比例风险模型,该模型灵活地适应特定类别的协变量效应,同时允许基线风险函数在潜在类别之间变化。采用非参数极大似然估计策略,我们推导了期望最大化(E -M)算法来估计所提出的模型。我们建立了所得估计量的理论性质。进行了广泛的模拟研究,证明了所提出的方法具有令人满意的有限样本性能,以及从考虑潜在类别的异质性中获得的预测效益。我们通过在统一数据集中的轻度认知障碍(MCI)队列应用进一步说明了所提出方法的实际效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1