Abnormal sample detection based on robust Mahalanobis distance estimation in adversarial machine learning

Pub Date : 2023-11-27 DOI:10.4310/23-sii818
Wan Tian, Lingyue Zhang, Hengjian Cui
{"title":"Abnormal sample detection based on robust Mahalanobis distance estimation in adversarial machine learning","authors":"Wan Tian, Lingyue Zhang, Hengjian Cui","doi":"10.4310/23-sii818","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of abnormal sample detection in deep learning-based computer vision, focusing on two types of abnormal samples: outlier samples and adversarial samples. The presence of these abnormal samples can significantly degrade the performance and robustness of deep learning models, posing security risks in critical areas. To address this, we propose a method that combines robust Mahalanobis distance (RMD) estimation with a pretrained convolutional neural networks (CNNs) model. The RMD estimation involves using minimum covariance matrix determinant (MCD), $T$-type, and $S$ estimators. Furthermore, we theoretically analyze the breakdown point and influence function of the $T$-type estimator. To evaluate the effectiveness and robustness of our method, we utilize public datasets, CNN models, and adversarial sample generation algorithms commonly employed in the field. The experimental results demonstrate the effectiveness of our algorithm in detecting abnormal samples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of abnormal sample detection in deep learning-based computer vision, focusing on two types of abnormal samples: outlier samples and adversarial samples. The presence of these abnormal samples can significantly degrade the performance and robustness of deep learning models, posing security risks in critical areas. To address this, we propose a method that combines robust Mahalanobis distance (RMD) estimation with a pretrained convolutional neural networks (CNNs) model. The RMD estimation involves using minimum covariance matrix determinant (MCD), $T$-type, and $S$ estimators. Furthermore, we theoretically analyze the breakdown point and influence function of the $T$-type estimator. To evaluate the effectiveness and robustness of our method, we utilize public datasets, CNN models, and adversarial sample generation algorithms commonly employed in the field. The experimental results demonstrate the effectiveness of our algorithm in detecting abnormal samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
对抗机器学习中基于鲁棒马氏距离估计的异常样本检测
本文研究了基于深度学习的计算机视觉中的异常样本检测问题,重点研究了异常样本的两种类型:离群样本和对抗样本。这些异常样本的存在会显著降低深度学习模型的性能和鲁棒性,在关键领域带来安全风险。为了解决这个问题,我们提出了一种将鲁棒马氏距离(RMD)估计与预训练卷积神经网络(cnn)模型相结合的方法。RMD估计包括使用最小协方差矩阵行列式(MCD)、$T$型和$S$估计器。进一步,从理论上分析了T型估计器的击穿点和影响函数。为了评估我们方法的有效性和鲁棒性,我们使用了公共数据集、CNN模型和该领域常用的对抗性样本生成算法。实验结果证明了该算法在异常样本检测中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1