Copy number variation detection based on constraint least squares

IF 0.3 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics and Its Interface Pub Date : 2023-11-27 DOI:10.4310/23-sii814
Xiaopu Wang, Xueqin Wang, Aijun Zhang, Canhong Wen
{"title":"Copy number variation detection based on constraint least squares","authors":"Xiaopu Wang, Xueqin Wang, Aijun Zhang, Canhong Wen","doi":"10.4310/23-sii814","DOIUrl":null,"url":null,"abstract":"Copy number variations (CNVs) are a form of structural variation of a DNA sequence, including amplification and deletion of a particular DNA segment on chromosomes. Due to the huge amount of data in every DNA sequence, there is a great need for a computationally fast algorithm that accurately identifies CNVs. In this paper, we formulate the detection of CNVs as a constraint least squares problem and show that circular binary segmentation is a greedy approach to solving this problem. To solve this problem with high accuracy and efficiency, we first derived a necessary optimality condition for its solution based on the alternating minimization technique and then developed a computationally efficient algorithm named AMIAS. The performance of our method was tested on both simulated data and two realworld applications using genomic data from diagnosed primal glioblastoma and the HapMap project. Our proposed method has competitive performance in identifying CNVs with high-throughput genotypic data.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"2 4","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii814","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Copy number variations (CNVs) are a form of structural variation of a DNA sequence, including amplification and deletion of a particular DNA segment on chromosomes. Due to the huge amount of data in every DNA sequence, there is a great need for a computationally fast algorithm that accurately identifies CNVs. In this paper, we formulate the detection of CNVs as a constraint least squares problem and show that circular binary segmentation is a greedy approach to solving this problem. To solve this problem with high accuracy and efficiency, we first derived a necessary optimality condition for its solution based on the alternating minimization technique and then developed a computationally efficient algorithm named AMIAS. The performance of our method was tested on both simulated data and two realworld applications using genomic data from diagnosed primal glioblastoma and the HapMap project. Our proposed method has competitive performance in identifying CNVs with high-throughput genotypic data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于约束最小二乘的拷贝数变异检测
拷贝数变异(CNVs)是DNA序列结构变异的一种形式,包括染色体上特定DNA片段的扩增和删除。由于每个DNA序列的数据量非常大,因此非常需要一种计算速度快的算法来准确识别CNVs。本文将CNVs的检测表述为约束最小二乘问题,并证明了圆二值分割是解决这一问题的贪婪方法。为了高精度、高效率地求解这一问题,我们首先基于交替极小化技术推导了其解的必要最优性条件,然后开发了计算效率高的AMIAS算法。我们的方法在模拟数据和两个现实应用中进行了性能测试,这些应用使用了来自诊断的原始胶质母细胞瘤和HapMap项目的基因组数据。我们提出的方法在利用高通量基因型数据识别CNVs方面具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
期刊最新文献
Estimating extreme value index by subsampling for massive datasets with heavy-tailed distributions Default Bayesian testing for the zero-inflated Poisson distribution A consistent specification test for functional linear quantile regression models Variable selection and estimation for high-dimensional partially linear spatial autoregressive models with measurement errors A double regression method for graphical modeling of high-dimensional nonlinear and non-Gaussian data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1