Minimizing Convex Functions with Rational Minimizers

IF 2.3 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Journal of the ACM Pub Date : 2022-12-19 DOI:https://dl.acm.org/doi/10.1145/3566050
Haotian Jiang
{"title":"Minimizing Convex Functions with Rational Minimizers","authors":"Haotian Jiang","doi":"https://dl.acm.org/doi/10.1145/3566050","DOIUrl":null,"url":null,"abstract":"<p>Given a separation oracle SO for a convex function <i>f</i> defined on ℝ<sup>n</sup> that has an integral minimizer inside a box with radius <i>R</i>, we show how to find an exact minimizer of <i>f</i> using at most\n<p><ul><li><p><i>O(n (n</i> log log <i>(n)/</i>log <i>(n)</i> + log (<i>R</i>))) calls to SO and poly (<i>n</i>, log (<i>R</i>)) arithmetic operations, or</p></li><li><p><i>O(n</i> log <i>(nR)</i> calls to SO and exp (<i>O(n)</i>) ⋅ poly (log <i>(R)</i>) arithmetic operations.</p></li></ul></p></p><p>When the set of minimizers of <i>f</i> has integral extreme points, our algorithm outputs an integral minimizer of <i>f</i>. This improves upon the previously best oracle complexity of <i>O(n</i><sup>2</sup> (<i>n</i> + log (<i>R</i>))) for polynomial time algorithms and <i>O(n</i><sup>2</sup> log (<i>nR</i>) for exponential time algorithms obtained by [Grötschel, Lovász and Schrijver, Prog. Comb. Opt. 1984, Springer 1988] over thirty years ago. Our improvement on Grötschel, Lovász and Schrijver’s result generalizes to the setting where the set of minimizers of <i>f</i> is a rational polyhedron with bounded vertex complexity.</p><p>For the Submodular Function Minimization problem, our result immediately implies a strongly polynomial algorithm that makes at most <i>O(n</i><sup>3</sup> log log (<i>n</i>)/log (<i>n</i>)) calls to an evaluation oracle, and an exponential time algorithm that makes at most <i>O(n</i><sup>2</sup> log (<i>n</i>)) calls to an evaluation oracle. These improve upon the previously best <i>O(n</i><sup>3</sup> log<sup>2</sup>(<i>n</i>)) oracle complexity for strongly polynomial algorithms given in [Lee, Sidford and Wong, FOCS 2015] and [Dadush, Végh and Zambelli, SODA 2018], and an exponential time algorithm with oracle complexity <i>O(n</i><sup>3</sup> log (<i>n</i>)) given in the former work.</p><p>Our result is achieved via a reduction to the Shortest Vector Problem in lattices. We show how an approximately shortest vector of an auxiliary lattice can be used to effectively reduce the dimension of the problem. Our analysis of the oracle complexity is based on a potential function that simultaneously captures the size of the search set and the density of the lattice, which we analyze via tools from convex geometry and lattice theory.</p>","PeriodicalId":50022,"journal":{"name":"Journal of the ACM","volume":"68 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the ACM","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3566050","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Given a separation oracle SO for a convex function f defined on ℝn that has an integral minimizer inside a box with radius R, we show how to find an exact minimizer of f using at most

  • O(n (n log log (n)/log (n) + log (R))) calls to SO and poly (n, log (R)) arithmetic operations, or

  • O(n log (nR) calls to SO and exp (O(n)) ⋅ poly (log (R)) arithmetic operations.

When the set of minimizers of f has integral extreme points, our algorithm outputs an integral minimizer of f. This improves upon the previously best oracle complexity of O(n2 (n + log (R))) for polynomial time algorithms and O(n2 log (nR) for exponential time algorithms obtained by [Grötschel, Lovász and Schrijver, Prog. Comb. Opt. 1984, Springer 1988] over thirty years ago. Our improvement on Grötschel, Lovász and Schrijver’s result generalizes to the setting where the set of minimizers of f is a rational polyhedron with bounded vertex complexity.

For the Submodular Function Minimization problem, our result immediately implies a strongly polynomial algorithm that makes at most O(n3 log log (n)/log (n)) calls to an evaluation oracle, and an exponential time algorithm that makes at most O(n2 log (n)) calls to an evaluation oracle. These improve upon the previously best O(n3 log2(n)) oracle complexity for strongly polynomial algorithms given in [Lee, Sidford and Wong, FOCS 2015] and [Dadush, Végh and Zambelli, SODA 2018], and an exponential time algorithm with oracle complexity O(n3 log (n)) given in the former work.

Our result is achieved via a reduction to the Shortest Vector Problem in lattices. We show how an approximately shortest vector of an auxiliary lattice can be used to effectively reduce the dimension of the problem. Our analysis of the oracle complexity is based on a potential function that simultaneously captures the size of the search set and the density of the lattice, which we analyze via tools from convex geometry and lattice theory.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用有理最小化器最小化凸函数
对于定义在一个半径为R的方框内的凸函数f,我们给出了一个分离oracle SO,它在一个半径为R的方框内有一个积分极小值,我们展示了如何使用at most (n (n log log (n)/log (n) + log (R)))调用SO和poly (n, log (R))算术运算,orO(n log (nR)调用SO和exp (O(n))⋅poly (log (R))算术运算来找到f的精确极小值。当f的极小值集具有积分极值点时,我们的算法输出f的积分极小值。这改进了先前的最佳oracle复杂度,对于多项式时间算法为O(n2 (n + log (R))),对于由[Grötschel, Lovász和Schrijver, Prog]获得的指数时间算法为O(n2 log (nR))。梳子。[Opt. 1984, Springer 1988]三十多年前。我们对Grötschel, Lovász和Schrijver的结果的改进推广到f的最小化集合是一个有界顶点复杂度的有理多面体的设置。对于次模函数最小化问题,我们的结果立即暗示了一个强多项式算法,它最多调用O(n3 log log (n)/log (n))次求值oracle,以及一个指数时间算法,它最多调用O(n2 log (n))次求值oracle。这些改进了先前在[Lee, Sidford和Wong, FOCS 2015]和[Dadush, v和Zambelli, SODA 2018]中给出的强多项式算法的最佳O(n3 log2(n)) oracle复杂度,以及先前工作中给出的oracle复杂度为O(n3 log (n))的指数时间算法。我们的结果是通过简化到格中的最短向量问题来实现的。我们展示了如何使用辅助晶格的近似最短向量来有效地降低问题的维数。我们对oracle复杂性的分析是基于一个潜在函数,该函数同时捕获了搜索集的大小和晶格的密度,我们通过凸几何和晶格理论的工具进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the ACM
Journal of the ACM 工程技术-计算机:理论方法
CiteScore
7.50
自引率
0.00%
发文量
51
审稿时长
3 months
期刊介绍: The best indicator of the scope of the journal is provided by the areas covered by its Editorial Board. These areas change from time to time, as the field evolves. The following areas are currently covered by a member of the Editorial Board: Algorithms and Combinatorial Optimization; Algorithms and Data Structures; Algorithms, Combinatorial Optimization, and Games; Artificial Intelligence; Complexity Theory; Computational Biology; Computational Geometry; Computer Graphics and Computer Vision; Computer-Aided Verification; Cryptography and Security; Cyber-Physical, Embedded, and Real-Time Systems; Database Systems and Theory; Distributed Computing; Economics and Computation; Information Theory; Logic and Computation; Logic, Algorithms, and Complexity; Machine Learning and Computational Learning Theory; Networking; Parallel Computing and Architecture; Programming Languages; Quantum Computing; Randomized Algorithms and Probabilistic Analysis of Algorithms; Scientific Computing and High Performance Computing; Software Engineering; Web Algorithms and Data Mining
期刊最新文献
Query lower bounds for log-concave sampling Transaction Fee Mechanism Design Sparse Higher Order Čech Filtrations Killing a Vortex Separations in Proof Complexity and TFNP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1