Yiming Liu, Guangming Pan, Guangren Yang, Wang Zhou
{"title":"Nonparametric conditional mean testing via an extreme-type statistic in high dimension","authors":"Yiming Liu, Guangming Pan, Guangren Yang, Wang Zhou","doi":"10.1111/sjos.12697","DOIUrl":null,"url":null,"abstract":"We propose a new test to investigate the conditional mean dependence between a response variable and the corresponding covariates in the high dimensional regimes. The test statistic is an extreme-type one built on the nonparametric method. The limiting null distribution of the proposed extreme type statistic under a mild mixing condition is established. Moreover, to make the test more powerful in general structures we propose a more general test statistic and develop its asymptotic properties. The power analysis of both methods is also considered. In real data analysis, we also propose a new way to conduct the feature screening based on our results. To evaluate the performance of our estimators and other methods, extensive simulations are conducted.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12697","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a new test to investigate the conditional mean dependence between a response variable and the corresponding covariates in the high dimensional regimes. The test statistic is an extreme-type one built on the nonparametric method. The limiting null distribution of the proposed extreme type statistic under a mild mixing condition is established. Moreover, to make the test more powerful in general structures we propose a more general test statistic and develop its asymptotic properties. The power analysis of both methods is also considered. In real data analysis, we also propose a new way to conduct the feature screening based on our results. To evaluate the performance of our estimators and other methods, extensive simulations are conducted.
期刊介绍:
The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia.
It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications.
The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems.
The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.