{"title":"Large Deviation Theory-based Adaptive Importance Sampling for Rare Events in High Dimensions","authors":"Shanyin Tong, Georg Stadler","doi":"10.1137/22m1524758","DOIUrl":null,"url":null,"abstract":"SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 3, Page 788-813, September 2023. <br/> Abstract. We propose a method for the accurate estimation of rare event or failure probabilities for expensive-to-evaluate numerical models in high dimensions. The proposed approach combines ideas from large deviation theory and adaptive importance sampling. The importance sampler uses a cross-entropy method to find an optimal Gaussian biasing distribution, and reuses all samples made throughout the process for both the target probability estimation and for updating the biasing distributions. Large deviation theory is used to find a good initial biasing distribution through the solution of an optimization problem. Additionally, it is used to identify a low-dimensional subspace that is most informative of the rare event probability. This subspace is used for the cross-entropy method, which is known to lose efficiency in higher dimensions. The proposed method does not require smoothing of indicator functions nor does it involve numerical tuning parameters. We compare the method with a state-of-the-art cross-entropy-based importance sampling scheme using three examples: a high-dimensional failure probability estimation benchmark, a problem governed by a diffusion equation, and a tsunami problem governed by the time-dependent shallow water system in one spatial dimension.","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"55 7","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/22m1524758","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM/ASA Journal on Uncertainty Quantification, Volume 11, Issue 3, Page 788-813, September 2023. Abstract. We propose a method for the accurate estimation of rare event or failure probabilities for expensive-to-evaluate numerical models in high dimensions. The proposed approach combines ideas from large deviation theory and adaptive importance sampling. The importance sampler uses a cross-entropy method to find an optimal Gaussian biasing distribution, and reuses all samples made throughout the process for both the target probability estimation and for updating the biasing distributions. Large deviation theory is used to find a good initial biasing distribution through the solution of an optimization problem. Additionally, it is used to identify a low-dimensional subspace that is most informative of the rare event probability. This subspace is used for the cross-entropy method, which is known to lose efficiency in higher dimensions. The proposed method does not require smoothing of indicator functions nor does it involve numerical tuning parameters. We compare the method with a state-of-the-art cross-entropy-based importance sampling scheme using three examples: a high-dimensional failure probability estimation benchmark, a problem governed by a diffusion equation, and a tsunami problem governed by the time-dependent shallow water system in one spatial dimension.
期刊介绍:
SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.