{"title":"Universal Generation for Optimality Theory Is PSPACE-Complete","authors":"Sophie Hao","doi":"10.1162/coli_a_00494","DOIUrl":null,"url":null,"abstract":"This paper shows that the universal generation problem (Heinz, Kobele, and Riggle 2009) for Optimality Theory (OT, Prince and Smolensky 1993, 2004) is PSPACE-complete. While prior work has shown that universal generation is at least NP-hard (Eisner 1997, 2000b; Wareham 1998; Idsardi 2006) and at most EXPSPACE-hard (Riggle 2004), our results place universal generation in between those two classes, assuming that NP ≠ PSPACE. We additionally show that when the number of constraints is bounded in advance, universal generation is at least NL-hard and at most NPNP-hard. Our proofs rely on a close connection between OT and the intersection non-emptiness problem for finite automata, which is PSPACE-complete in general (Kozen 1977) and NL-complete when the number of automata is bounded (Jones 1975). Our analysis shows that constraint interaction is the main contributor to the complexity of OT: the ability to factor transformations into simple, interacting constraints allows OT to furnish compact descriptions of intricate phonological phenomena.","PeriodicalId":49089,"journal":{"name":"Computational Linguistics","volume":"90 7","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00494","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper shows that the universal generation problem (Heinz, Kobele, and Riggle 2009) for Optimality Theory (OT, Prince and Smolensky 1993, 2004) is PSPACE-complete. While prior work has shown that universal generation is at least NP-hard (Eisner 1997, 2000b; Wareham 1998; Idsardi 2006) and at most EXPSPACE-hard (Riggle 2004), our results place universal generation in between those two classes, assuming that NP ≠ PSPACE. We additionally show that when the number of constraints is bounded in advance, universal generation is at least NL-hard and at most NPNP-hard. Our proofs rely on a close connection between OT and the intersection non-emptiness problem for finite automata, which is PSPACE-complete in general (Kozen 1977) and NL-complete when the number of automata is bounded (Jones 1975). Our analysis shows that constraint interaction is the main contributor to the complexity of OT: the ability to factor transformations into simple, interacting constraints allows OT to furnish compact descriptions of intricate phonological phenomena.
期刊介绍:
Computational Linguistics is the longest-running publication devoted exclusively to the computational and mathematical properties of language and the design and analysis of natural language processing systems. This highly regarded quarterly offers university and industry linguists, computational linguists, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, and philosophers the latest information about the computational aspects of all the facets of research on language.