Jianhui Pang, Derek Fai Wong, Dayiheng Liu, Jun Xie, Baosong Yang, Yu Wan, Lidia Sam Chao
{"title":"Rethinking the Exploitation of Monolingual Data for Low-Resource Neural Machine Translation","authors":"Jianhui Pang, Derek Fai Wong, Dayiheng Liu, Jun Xie, Baosong Yang, Yu Wan, Lidia Sam Chao","doi":"10.1162/coli_a_00496","DOIUrl":null,"url":null,"abstract":"The utilization of monolingual data has been shown to be a promising strategy for addressing low-resource machine translation problems. Previous studies have demonstrated the effectiveness of techniques such as Back-Translation and self-supervised objectives, including Masked Language Modeling, Causal Language Modeling, and Denoise Autoencoding, in improving the performance of machine translation models. However, the manner in which these methods contribute to the success of machine translation tasks and how they can be effectively combined remains an under-researched area. In this study, we carry out a systematic investigation of the effects of these techniques on linguistic properties through the use of probing tasks, including source language comprehension, bilingual word alignment, and translation fluency. We further evaluate the impact of Pre-Training, Back-Translation, and Multi-Task Learning on bitexts of varying sizes. Our findings inform the design of more effective pipelines for leveraging monolingual data in extremely low-resource and low-resource machine translation tasks. Experiment results show consistent performance gains in seven translation directions, which provide further support for our conclusions and understanding of the role of monolingual data in machine translation.","PeriodicalId":49089,"journal":{"name":"Computational Linguistics","volume":"64 1","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Linguistics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/coli_a_00496","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of monolingual data has been shown to be a promising strategy for addressing low-resource machine translation problems. Previous studies have demonstrated the effectiveness of techniques such as Back-Translation and self-supervised objectives, including Masked Language Modeling, Causal Language Modeling, and Denoise Autoencoding, in improving the performance of machine translation models. However, the manner in which these methods contribute to the success of machine translation tasks and how they can be effectively combined remains an under-researched area. In this study, we carry out a systematic investigation of the effects of these techniques on linguistic properties through the use of probing tasks, including source language comprehension, bilingual word alignment, and translation fluency. We further evaluate the impact of Pre-Training, Back-Translation, and Multi-Task Learning on bitexts of varying sizes. Our findings inform the design of more effective pipelines for leveraging monolingual data in extremely low-resource and low-resource machine translation tasks. Experiment results show consistent performance gains in seven translation directions, which provide further support for our conclusions and understanding of the role of monolingual data in machine translation.
期刊介绍:
Computational Linguistics is the longest-running publication devoted exclusively to the computational and mathematical properties of language and the design and analysis of natural language processing systems. This highly regarded quarterly offers university and industry linguists, computational linguists, artificial intelligence and machine learning investigators, cognitive scientists, speech specialists, and philosophers the latest information about the computational aspects of all the facets of research on language.