{"title":"Drift–Diffusion Simulation of Intermediate Band Solar Cell: Effect of Intermediate Band Continuity Constraint","authors":"Kodai Shiba, Yoshitaka Okada, Tomah Sogabe","doi":"10.1155/2023/5578627","DOIUrl":null,"url":null,"abstract":"Self-consistent drift–diffusion model has been widely employed to simulate the device performance of intermediate band solar cell (IBSC) under practical device configuration. However, one of the remained issues in the drift–diffusion modeled-based works is the difficulty to reach the IB carrier continuity through the self-consistent manner. In most of the previous reports the constraints were relaxed or just partially satisfied; which render the unreliable performance results and misguide the device design strategy. In this work, in order to solve this issue and to validate our results, we performed extensive simulations to fully disclose the significant effect of the IB continuity constraints by taking InAs/GaAs quantum dot-based IBSC as a model device using the semiconductor modules in COMSOL Multiphysics combined with the Fortran codes. We found that under rigorous satisfaction of IB continuity constraint, the band potential profiles for the IBSC with either doped or nondoped IB under various light illumination conditions are nearly identical to those under the dark conditions. Moreover, from the simulated current–voltage curve dependence on the light concentration ratio, we found the device performance based on drift–diffusion under rigorous IB continuity constraint showed similar tendency to the features simulated based on detailed balance principle except the much-lowered power conversion efficiency. Our work demonstrated here, serves as an accurate and reliable IBSC device design approach toward better IB material screening, efficiency improvement, optical management, and extended application in the emerging field such as the perovskite material-based IBSC.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"193 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2023/5578627","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
Self-consistent drift–diffusion model has been widely employed to simulate the device performance of intermediate band solar cell (IBSC) under practical device configuration. However, one of the remained issues in the drift–diffusion modeled-based works is the difficulty to reach the IB carrier continuity through the self-consistent manner. In most of the previous reports the constraints were relaxed or just partially satisfied; which render the unreliable performance results and misguide the device design strategy. In this work, in order to solve this issue and to validate our results, we performed extensive simulations to fully disclose the significant effect of the IB continuity constraints by taking InAs/GaAs quantum dot-based IBSC as a model device using the semiconductor modules in COMSOL Multiphysics combined with the Fortran codes. We found that under rigorous satisfaction of IB continuity constraint, the band potential profiles for the IBSC with either doped or nondoped IB under various light illumination conditions are nearly identical to those under the dark conditions. Moreover, from the simulated current–voltage curve dependence on the light concentration ratio, we found the device performance based on drift–diffusion under rigorous IB continuity constraint showed similar tendency to the features simulated based on detailed balance principle except the much-lowered power conversion efficiency. Our work demonstrated here, serves as an accurate and reliable IBSC device design approach toward better IB material screening, efficiency improvement, optical management, and extended application in the emerging field such as the perovskite material-based IBSC.
期刊介绍:
The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.