{"title":"An analytic solution for multi-period uncertain portfolio selection problem","authors":"Bo Li, Yufei Sun, Kok Lay Teo","doi":"10.1007/s10700-021-09367-8","DOIUrl":null,"url":null,"abstract":"<p>The return rates of risky assets in financial markets are usually assumed as random variables or fuzzy variables. For the ever-changing real asset market, this assumption may not always be satisfactory. Thus, it is sometimes more realistic to take the return rates as uncertain variables. However, for the existing works on multi-period uncertain portfolio selection problems, they do not find analytic optimal solutions. In this paper, we propose a method for deriving an analytic optimal solution to a multi-period uncertain portfolio selection problem. First, a new uncertain risk measure is defined to model the investment risk. Then, we formulate a bi-criteria optimization model, where the investment return is maximized, while the investment risk is minimized. On this basis, an equivalent transformation is presented to convert the uncertain bi-criteria optimization problem into an equivalent bi-criteria optimization problem. Then, by applying dynamic programming method, an analytic optimal solution is obtained. Finally, a numerical simulation is carried out to show that the proposed model is realistic and the method being developed is applicable and effective.</p>","PeriodicalId":55131,"journal":{"name":"Fuzzy Optimization and Decision Making","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2021-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Optimization and Decision Making","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10700-021-09367-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
The return rates of risky assets in financial markets are usually assumed as random variables or fuzzy variables. For the ever-changing real asset market, this assumption may not always be satisfactory. Thus, it is sometimes more realistic to take the return rates as uncertain variables. However, for the existing works on multi-period uncertain portfolio selection problems, they do not find analytic optimal solutions. In this paper, we propose a method for deriving an analytic optimal solution to a multi-period uncertain portfolio selection problem. First, a new uncertain risk measure is defined to model the investment risk. Then, we formulate a bi-criteria optimization model, where the investment return is maximized, while the investment risk is minimized. On this basis, an equivalent transformation is presented to convert the uncertain bi-criteria optimization problem into an equivalent bi-criteria optimization problem. Then, by applying dynamic programming method, an analytic optimal solution is obtained. Finally, a numerical simulation is carried out to show that the proposed model is realistic and the method being developed is applicable and effective.
期刊介绍:
The key objective of Fuzzy Optimization and Decision Making is to promote research and the development of fuzzy technology and soft-computing methodologies to enhance our ability to address complicated optimization and decision making problems involving non-probabilitic uncertainty.
The journal will cover all aspects of employing fuzzy technologies to see optimal solutions and assist in making the best possible decisions. It will provide a global forum for advancing the state-of-the-art theory and practice of fuzzy optimization and decision making in the presence of uncertainty. Any theoretical, empirical, and experimental work related to fuzzy modeling and associated mathematics, solution methods, and systems is welcome. The goal is to help foster the understanding, development, and practice of fuzzy technologies for solving economic, engineering, management, and societal problems. The journal will provide a forum for authors and readers in the fields of business, economics, engineering, mathematics, management science, operations research, and systems.