{"title":"Common probability-based interactive algorithms for group decision making with normalized probability linguistic preference relations","authors":"Jie Tang, Fanyong Meng, Yongliang Zhang","doi":"10.1007/s10700-021-09360-1","DOIUrl":null,"url":null,"abstract":"<p>Probabilistic linguistic variable is a kind of powerful qualitative fuzzy sets, which permits the decision makers (DMs) to apply several linguistic variables with probabilities to denote a judgment. This paper studies group decision making (GDM) with normalized probability linguistic preference relations (NPLPRs). To achieve this goal, an acceptably multiplicative consistency based interactive algorithm is provided to derive common probability linguistic preference relations (CPLPRs) from PLPRs, by which a new acceptably multiplicative consistency concept for NPLPRs is defined. When the multiplicative consistency of NPLPRs is unacceptable, models for deriving acceptably multiplicatively consistent NPLPRs are constructed. Then, it studies incomplete NPLPRs (InNPLPRs) and offers a common probability and acceptably multiplicative consistency based interactive algorithm to determine missing judgments. Furthermore, a correlation coefficient between CPLPRs is provided, by which the weights of the DMs are ascertained. Meanwhile, a consensus index based on CPLPRs is defined. When the consensus does not reach the requirement, a model to increase the level of consensus is built that can ensure the adjusted LPRs to meet the multiplicative consistency and consensus requirement. Moreover, an interactive algorithm for GDM with NPLPRs is provided, which can address unacceptably multiplicatively consistent InNPLPRs. Finally, an example about the evaluation of green design schemes for new energy vehicles is provided to indicate the application of the new algorithm and comparative analysis is conducted.</p>","PeriodicalId":55131,"journal":{"name":"Fuzzy Optimization and Decision Making","volume":"14 10","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Optimization and Decision Making","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10700-021-09360-1","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 5
Abstract
Probabilistic linguistic variable is a kind of powerful qualitative fuzzy sets, which permits the decision makers (DMs) to apply several linguistic variables with probabilities to denote a judgment. This paper studies group decision making (GDM) with normalized probability linguistic preference relations (NPLPRs). To achieve this goal, an acceptably multiplicative consistency based interactive algorithm is provided to derive common probability linguistic preference relations (CPLPRs) from PLPRs, by which a new acceptably multiplicative consistency concept for NPLPRs is defined. When the multiplicative consistency of NPLPRs is unacceptable, models for deriving acceptably multiplicatively consistent NPLPRs are constructed. Then, it studies incomplete NPLPRs (InNPLPRs) and offers a common probability and acceptably multiplicative consistency based interactive algorithm to determine missing judgments. Furthermore, a correlation coefficient between CPLPRs is provided, by which the weights of the DMs are ascertained. Meanwhile, a consensus index based on CPLPRs is defined. When the consensus does not reach the requirement, a model to increase the level of consensus is built that can ensure the adjusted LPRs to meet the multiplicative consistency and consensus requirement. Moreover, an interactive algorithm for GDM with NPLPRs is provided, which can address unacceptably multiplicatively consistent InNPLPRs. Finally, an example about the evaluation of green design schemes for new energy vehicles is provided to indicate the application of the new algorithm and comparative analysis is conducted.
期刊介绍:
The key objective of Fuzzy Optimization and Decision Making is to promote research and the development of fuzzy technology and soft-computing methodologies to enhance our ability to address complicated optimization and decision making problems involving non-probabilitic uncertainty.
The journal will cover all aspects of employing fuzzy technologies to see optimal solutions and assist in making the best possible decisions. It will provide a global forum for advancing the state-of-the-art theory and practice of fuzzy optimization and decision making in the presence of uncertainty. Any theoretical, empirical, and experimental work related to fuzzy modeling and associated mathematics, solution methods, and systems is welcome. The goal is to help foster the understanding, development, and practice of fuzzy technologies for solving economic, engineering, management, and societal problems. The journal will provide a forum for authors and readers in the fields of business, economics, engineering, mathematics, management science, operations research, and systems.